
Towards self-similar solvers: 

An application to surface tension driven flows

N. CAILLER†, R. WUNENBURGER† & A. ANTKOWIAK†


†Institut Jean Le Rond 𝜕’Alembert, CNRS UMR 7190, Sorbonne Université, Paris 75005, France

1

BASILISK (GERRIS) USERS’ MEETING 

∗∗∗ 


5-7th July 2023



t

r

z

[1]

I - Introduction


2

I.1 - Visualizing Scale Invariances (1/2) 


[1] Zeff et al., Singularity dynamics in curvature collapse and jet 
eruption on fluid surface. Nature 403 (2000)


Collapsing cavity profiles seem to have the  
same shape. 

Experimental near-singular distortion  
of the free surface.


Balance between inertia and surface tension.
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vvvFinite-time singularities  
(collapsing Faraday Waves)
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I.1 - Visualizing Scale Invariances (1/2) 


[1] Zeff et al., Singularity dynamics in curvature collapse and jet 
eruption on fluid surface. Nature 403 (2000)


Collapsing cavity profiles seem to have the  
same shape. 

Experimental near-singular distortion  
of the free surface.


Balance between inertia and surface tension.

A rescaling shows that  
these time-dependent profiles  
correspond to a single one Scale invariance with homotheties
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[2] Thoroddsen et al., Experiments on bubble pinch-off. 
Phys. Fluids 19 (2007)

A wide variety of 3D physical 
problems highly non-linear  
involving locally conical shapes. 

Lengths scales evolving between 
 and  m.
10−2 10−9

Bubble pinch-offs

[2]

I.1 - Visualizing Scale Invariances (2/2) 




I - Introduction


3

[2] Thoroddsen et al., Experiments on bubble pinch-off. 
Phys. Fluids 19 (2007)

A wide variety of 3D physical 
problems highly non-linear  
involving locally conical shapes. 

Lengths scales evolving between 
 and  m.
10−2 10−9

Bubble pinch-offs

[2]

[3] A. M. Gañán-Calvo, Revision of Bubble Bursting: Universal 
Scaling Laws of Top Jet Drop Size and Speed. PRL 119 (2017)


[4] A. Berny, Étude numérique de l’éclatement d’une bulle à la 
surface de différents liquides. PhD Thesis (2020)

   Scanning all these scales requires high computational costs  
(cf. [3], [4]).

⇒

I.1 - Visualizing Scale Invariances (2/2) 
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⇒

Again, scale invariance with cones seems to emerge,   
when looking at surface profile shapes!

I.1 - Visualizing Scale Invariances (2/2) 




y

x

t = 0

Cross-section of a tapered sheet of liquid (wedge)

4

II.1 -  A 2D inviscid modelization… 


[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)


II.A - Keller & Miksis [5] problem


Breaking of a liquid sheet assimilated 

to a wedge.
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Breaking of a liquid sheet assimilated 
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 - surface tensionσ

Breaking of a liquid sheet assimilated 
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ρ
 - densityρ
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 - initial and far-field angleθ0
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II.1 -  A 2D inviscid modelization… 


[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)


II.A - Keller & Miksis [5] problem


σ
 - surface tensionσ

Breaking of a liquid sheet assimilated 

to a wedge.

ρ
 - densityρ

θ0

 - initial and far-field angleθ0

Recoil near the vertex of the wedge 
under surface tension effects.
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II.1 -  A 2D inviscid modelization… 


[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)


II.A - Keller & Miksis [5] problem


σ
 - surface tensionσ

Breaking of a liquid sheet assimilated 

to a wedge.

ρ
 - densityρ

θ0

 - initial and far-field angleθ0

Recoil near the vertex of the wedge 
under surface tension effects.

No viscosity taken into account.
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[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)


What is happening if we are simulating this study case?

 
 

 
° 
° 

 
 

N = 7
Nmax = 8
L0 = 1
θ0 = 45
β0 = 90
ρfluid = 1
ρgas = 10−3

σ = 1
Global Parameters

Vorticity

Pressure

II.A - Keller & Miksis [5] problem
 II.2 -  Simulation in the Physical Space 
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As shown in the video  too many scales to be scanned! ⇒
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[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)


What is happening if we are simulating this study case?

 
 

 
° 
° 

 
 

N = 7
Nmax = 8
L0 = 1
θ0 = 45
β0 = 90
ρfluid = 1
ρgas = 10−3

σ = 1
Global Parameters

In the physical space, a similar 
pattern is observed, signature  

of a scale invariance?

t

As shown in the video  too many scales to be scanned! ⇒

Vorticity

Pressure

II.A - Keller & Miksis [5] problem
 II.2 -  Simulation in the Physical Space 
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II.A - Keller & Miksis [5] problem
 II.3 -  Numerical Results of K&M 


[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)


• Keller and Miksis determined theoretically the scale invariance 

• Their numerical results were obtained:

• by using a Boundary Integral Method;

• searching for a stationary solution 

To that end, they relied on 2 main assumptions: 
1. The fluid is irrotational: potential theory 
2. The fluid is inviscid.

STATIONARY SOLUTIONS FOR DIFFERENT WEDGE ANGLES θ0 ⟶
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[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)
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II.5 - The Scale Invariance Method 
II.B - Scale Invariance
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II.5 - The Scale Invariance Method 
II.B - Scale Invariance


1. Change of scale on each quantity  involved in the problem, under the form ,  
where  is the transformed variable and  is a scaling factor.

xi xi ↦ x*i x′￼i
x′￼i x*i
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II.5 - The Scale Invariance Method 
II.B - Scale Invariance


1. Change of scale on each quantity  involved in the problem, under the form ,  
where  is the transformed variable and  is a scaling factor.

xi xi ↦ x*i x′￼
x′￼ x*i

2. Find the scaling group that leaves the problem invariant: 
After changing scales, the problem written for  is formally identical to the one written for ;  
this implies constraints.

x′￼ xi

3. Choice of free parameters:  
Counting the number of independent relationships  and scaling factors :  
                                       free parameters letting invariant the problem.

R S
F = R − S

4. Consequences for the solution: 
As the original problem is invariant to these changes of scale, so is its solution.



9

II.6 - A brief Example for K&M problem
II.B - Scale Invariance


Simplified cartesian Navier-Stokes eqns:
∂xu = − ∂yv

∂tu + u ∂xu + v ∂yu = − ∂x(p/ρ)
∂tv + u ∂xv + v ∂yv = − ∂y(p/ρ)

Initial Condition (free-surface shape):

f(x, y,0) = y cot θ0 − x

Kinematic Condition:

∂t f + u∂x f = 0
∂t f + v∂x f = 0

Dynamic Condition:

p(x, y, t)
f=0

= σκ

where  is the curvature. κ
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III.1 - Motivation for computing directly 

into the Self-Similar Space 


• Self-similar solution: stationary solution in a particular rescaled space, thanks to the  
study of scale invariances throughout the physical problem


• Previous slides: only rescaling  all the needed scales have to be simulated


• Simulate directly into the self-similar space = all the scales have become  
 overcoming numerous numerical obstacles (meshes)


• To include easily viscosity effects:  
not done in papers [5], [6], [7] using potential theory


⇒

O(1)
⇒

[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)


[6] Day et al., Self-Similar Capillary Pinchoff of an Inviscid Fluid. PRL 80 (1998)


[7] Sierou and Lister, Self-similar recoil of inviscid drops. Physics of Fluids 19 (2004)


III - Self-Similar Navier-Stokes 

solver with Basilisk 
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III.2 - Strategy for finding S-I. Solutions
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III - Self-Similar Navier-Stokes 

solver with Basilisk 


III.2 - Strategy for finding S-I. Solutions

• We search for the most general solution to the N-S. equations 
while using scale invariant variables, under the form , where: 
 
                                                    
 
following [8] (logarithmic time). 

f (X̃, Ỹ, τ)
τ = ln t
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III - Self-Similar Navier-Stokes 

solver with Basilisk 


III.2 - Strategy for finding S-I. Solutions

[8] Eggers and Fontelos, Singularities: 
Formation, Structure, and Propagation . 
Cambridge Texts of Applied Mathematics (2015)


• We search for the most general solution to the N-S. equations 
while using scale invariant variables, under the form , where: 
 
                                                    
 
following [8] (logarithmic time). 

f (X̃, Ỹ, τ)
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III - Self-Similar Navier-Stokes 

solver with Basilisk 


III.2 - Strategy for finding S-I. Solutions

[8] Eggers and Fontelos, Singularities: 
Formation, Structure, and Propagation . 
Cambridge Texts of Applied Mathematics (2015)


• We search for the most general solution to the N-S. equations 
while using scale invariant variables, under the form , where: 
 
                                                    
 
following [8] (logarithmic time). 

f (X̃, Ỹ, τ)
τ = ln t

• The introduction of the variable :

 gives an evolution equation in the self-similar space, solved with Basilisk; 
 while the problem remains unsteady, the solution is NOT scale invariant; 
 Basilisk is used to study how the numerical solution converges or not 

towards a scale invariant solution, i.e. a solution when  condition is met. 

τ
⇒
⇒
⇒

∂τ f → 0
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III - Self-Similar Navier-Stokes 

solver with Basilisk 


III.3 - Formulation 

in the Self-Similar Space


Self-similar variables

Self-similar functions

• The substitution 

• The notation simplification 

• The free surface 

• The curvature 

ν̃ = ν (ρ/σ)2/3

∇ ≡ ∇(X̃,Ỹ)
F̃

κ̃

X̃ = ( ρ
σt2 )

1/3

x ; Ỹ = ( ρ
σt2 )

1/3

y

X̃ := (X̃
Ỹ) ; τ = ln(t)

u(x, y, t) = ( σ
ρt )

1/3

Ũ [X̃(x, t), Ỹ(y, t), τ(t)]

p(x, y, t) = ρ ( σ
ρt )

2/3

P̃ [X̃(x, t), Ỹ(y, t), τ(t)]

Special Notations
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y

X̃ := (X̃
Ỹ) ; τ = ln(t)

u(x, y, t) = ( σ
ρt )

1/3

Ũ [X̃(x, t), Ỹ(y, t), τ(t)]

p(x, y, t) = ρ ( σ
ρt )

2/3

P̃ [X̃(x, t), Ỹ(y, t), τ(t)]

Special Notations

Self-similar N-S. Equations

∇ ⋅ Ũ = 0 ∂τŨ + ∇ ⋅ (Ũ ⊗ Ũ) = − ∇P̃ + ν̃ (∇2Ũ) −Ũ⏟
source term

new advection term

+
2
3

∇ ⋅ (X̃ ⊗ Ũ)e−τ/3
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III - Self-Similar Navier-Stokes 

solver with Basilisk 


III.3 - Formulation 

in the Self-Similar Space


Init. Cond. propagated

Far-field Condition

Kinematic Condition

Dynamic Condition

t → 0 ⇒ F̃ (X̃, Ỹ)
X̃ →∞

X̃ tan(θ0) − Ỹ

Ũ
X̃ →∞

0

F̃τ + (Ũ ⋅ ∇) F̃ −
2
3 (X̃ ⋅ ∇) F̃ = 0

P̃(X̃, Ỹ, τ)
F̃=0

= κ̃

Self-similar variables

Self-similar functions
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• The free surface 

• The curvature 
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X̃ = ( ρ
σt2 )

1/3
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1/3

y

X̃ := (X̃
Ỹ) ; τ = ln(t)

u(x, y, t) = ( σ
ρt )

1/3
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P̃ [X̃(x, t), Ỹ(y, t), τ(t)]

Special Notations

Self-similar N-S. Equations

∇ ⋅ Ũ = 0 ∂τŨ + ∇ ⋅ (Ũ ⊗ Ũ) = − ∇P̃ + ν̃ (∇2Ũ) −Ũ⏟
source term

new advection term

+
2
3

∇ ⋅ (X̃ ⊗ Ũ)e−τ/3
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solver with Basilisk 


III.4 - Strategy for Basilisk solvers

Libraries used: 
centered.h —> bcg.h

two-phase.h —> vof.h

contact.h

tension.h


Two major additions:  
1. A new advection velocity   the advected velocity 
2. A source term  in the RHS of the self-similar formulation of the N-S. equations  

Λ̃ := Ũ − (2/3) X̃ ≠ Ũ
−Ũ

 Modularity of Basilisk can be exploited  
to tackle these changes!

⟶
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needed for the BCG advection scheme (BCG is NOT modified!) in the 
event advection_term:


event advection_term (i++,last)

{

  if (!stokes) {

    [...]

    advection ((scalar *){u}, lambdaf, dt, (scalar *){g});

  }

}


Ũf
Λ̃f



13

III - Self-Similar Navier-Stokes 

solver with Basilisk 


III.4 - Strategy for Basilisk solvers

Libraries used: 
centered.h —> bcg.h

two-phase.h —> vof.h

contact.h

tension.h


Two major additions:  
1. A new advection velocity   the advected velocity 
2. A source term  in the RHS of the self-similar formulation of the N-S. equations  
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−Ũ

 Modularity of Basilisk can be exploited  
to tackle these changes!

⟶

• Initialization of a position vector xi[] and a face advection velocity 
vector lambdaf[] in event init.


• Set the correct velocity for the CFL with lambdaf[] in event 
stability.


In centered.h

• The face advected velocity  is predicted with the face advection 
velocity  in the prediction() function.


Ũf
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• The predicted face advected velocity  is then projected to be 
divergence free and used for updating the face advection velocity  
needed for the BCG advection scheme (BCG is NOT modified!) in the 
event advection_term:


event advection_term (i++,last)

{

  if (!stokes) {

    [...]

    advection ((scalar *){u}, lambdaf, dt, (scalar *){g});

  }

}


Ũf
Λ̃f

In vof.h

We call the face vector lambdaf[] instead of uf[]  
 and replace each occurrence of the last one by the first one

In user-file.c

The source term  in the RHS of the self-similar formulation 

of the N-S. equations is simply an update of the event acceleration

−Ũ
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