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| - Introduction [.1 - Visualizing Scale Invariances (1/2)

[1] Zeff et al., Singularity dynamics in curvature collapse and jet

Experimental near-singular distortion eruption on fluid surface. Nature 403 (2000)

of the free surface.

Balance between inertia and surface tension.

h
Finite-time singularities
(collapsing Faraday Waves)
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| - Introduction [.1 - Visualizing Scale Invariances (2/2)

s | | ' A wide variety of 3D physical
 problems highly non-linear
involving locally conical shapes.

i
\. Lengths scales evolving between
' 102 and 10~ m.

[2] Thoroddsen et al., Experiments on bubble pinch-off.
- Phys. Fluids 19 (2007)
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A wide variety of 3D physical
problems highly non-linear
involving locally conical shapes.

o
.\. Lengths scales evolving between => Scanning all these scales requires high computational costs
. 107%and 1077 m. (cf. [3], [4)).
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[4] A. Berny, Etude numérique de Uéclatement d’une bulle a la
surface de différents liquides. PhD Thesis (2020)
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| - Introduction [.1 - Visualizing Scale Invariances (2/2)

A wide variety of 3D physical
problems highly non-linear
involving locally conical shapes.

o
.\. Lengths scales evolving between => Scanning all these scales requires high computational costs
. 107%and 1077 m. (cf. [3], [4)).

[2] Thoroddsen et al., Experiments on bubble pinch-off.
Phys. Fluids 19 (2007)

Again, scale invariance with cones seems to emerge,
when looking at surface profile shapes!

[3] A. M. Gaiian-Calvo, Revision of Bubble Bursting: Universal
Scaling Laws of Top Jet Drop Size and Speed. PRL 119 (2017)

[4] A. Berny, Etude numérique de Uéclatement d’une bulle a la
surface de différents liquides. PhD Thesis (2020)




II.LA - Keller & Miksis [5] problem [1.1 - A 2D inviscid modelization...
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Breaking of a liquid sheet assimilated
to a wedge.

Cross-section of a tapered sheet of liquid (wedge)

[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)
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II.LA - Keller & Miksis [5] problem II.1 - A 2D inviscid modelization...
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o - surface tension
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Breaking of a liquid sheet assimilated
to a wedge.

Recoil near the vertex of the wedge
under surface tension effects.

No viscosity taken into account.

(5]

> <

o - surface tension
p - density

0, - initial and far-field angle

[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)



II.LA - Keller & Miksis [5] problem 1.2 - Simulation in the Physical Space

What is happening if we are simulating this study case?

t = 0
Vorticity

N =71

Nmax — 8

L,=1

0, = 45°

Po = 90°

Pfluid = 1

P gas — 10_3

oc=1

Global Parameters

[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)
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II.LA - Keller & Miksis [5] problem 1.2 - Simulation in the Physical Space

What is happening if we are simulating this study case?
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[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)



(5]

* Keller and Miksis determined theoretically the scale invariance

* Their numerical results were obtained:
* by using a Boundary Integral Method,
e searching for a stationary solution

To that end, they relied on 2 main assumptions:

1. The fluid is irrotational: potential theory

2. The fluid is inviscid.

STATIONARY SOLUTIONS FOR DIFFERENT WEDGE ANGLES 90 —
0.5

4 T H T T 7 T T T
Qp i QO / /
] / v
S | S / /
/ / Vv
:O: ] ¢:" ) 2 /
II / b@ /
I / 6 / -
3.5 I ! // /// b‘ Ve
I {/
%O" %Q// // /,4’//
/ 7
,I' / %Q///
/
[ / //
I / 7
,’ / /
] / 7
/ / P
/ / 7 il
) / /
/ yd
ll // s 6%
/ / Ve 6
2.5 | / / / N
' ) / / (L. e
I 7
/ / ,// _ 03 e
) / V4 / 7
] / e P
] / e QQ P
! / el el 66%
,l // P < //’, (\ 5 R
= 2} / / 7 ~ L d
! / - e P 7
/ - ~
] / /// // Q ——————
Il // /,/ // //”
] / 7’ / i
] / 7/ /7 7
| / // // /
! / 2 e ___>7 /.
I’ /// -~ - /
15 — I / s / -
] / // /
I // e e
’ 7 e T m———,
| // v 7
] / / g
] / / 7
| / /’
| / / / /
| / / //
| / / / /
1L ' j /oy _
| / / / /
| ! !, I
| II /'I// / /
| ] A1 /
| | A /
! I I I
! l I I/
| ! ] I
| | ] [
| | ! [
I | I I ]
| | ] [
! I ] I
| 7 I [ |
| /,1 | I 1
i .' i [ ]
| | | ]
| | | ] . .
A | | | Keller & Miksis ------
| 1 | ] | 1 | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4

[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)



Physical Space VS Self-Similar Space for 0, = 45°
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Numerical tests for different far-field angles
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11.B - Scale Invariance I1.5 - The Scale Invariance Method
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11.B - Scale Invariance I1.5 - The Scale Invariance Method

1. Change of scale on each quantity x; involved in the problem, under the form x; — xl.*xl-’,

where X! is the transformed variable and xl.* Is a scaling factor.

2. Find the scaling group that leaves the problem invariant:

After changing scales, the problem written for x; is formally identical to the one written for x;;
this implies constraints.

3. Choice of free parameters:
Counting the number of independent relationships R and scaling factors S:
FF' = R — § free parameters letting invariant the problem.

4. Consequences for the solution:
As the original problem is invariant to these changes of scale, so is its solution.



Simplified cartesian Navier-Stokes eqns:
ou=— dyv
du+udu+vou=—0o(plp)
dyv+udy+voy=—9,(plp)
Initial Condition (free-surface shape):
f(x,y,0) =ycotfy —x

Kinematic Condition:

o,f+uo.f=0
o,f+vo.f=0

Dynamic Condition:

pe.y,0| _ = ox

where K is the curvature.




11.B - Scale Invariance [1.6 - A brief Example for K&M problem
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Simplified cartesian Navier-Stokes eqns: DECOMPOSITION

O U = — 0y

x=x*x, y=y*, t=rt, u=u*u,
du+udu+vou=—0o(plp)

v=Vv¥, p=p*p, p=p*p, o=o0c%c
dyv+udy+voy=—9,(plp)

To conserve the scales and let invariant the problem,

Initial Condition (free-surface shape): the following constraints have to be respected:
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Simplified cartesian Navier-Stokes eqns:

O U = — 0y
du+udu+vou=—0o(plp)
dyv+udy+voy=—9,(plp)

Initial Condition (free-surface shape):
f(x,y,0) =ycotfy —x
Kinematic Condition:
o,f+uo.f=0
o0f+vo.f=0

Dynamic Condition:

pe.y,0| _ = ox

where K is the curvature.

DECOMPOSITION

x=x*x, y=y*, t=rt, u=u*u,

/

v=v&' p=p*p, p=p*p, o6=o0c%

To conserve the scales and let invariant the problem,
the following constraints have to be respected:

¢ % % %2 1 p*
u* 1 X us 2 U™ 3 P % % 2 %
— = —_— = = p* = X y

8 scaling factors v we
5 independent relations => 3 free param. => (6 » P ’t)

Variables can be expressed according to this choice of parameters:

) ) o 2 13 S\ 13 S\ 23
— — K — pk — * — X
Xt =y p U* = v* = (p*t*) P=p (p*t*)




® Self-similar solution: stationary solution in a particular rescaled space, thanks to the
study of scale invariances throughout the physical problem

® Previous slides: only rescaling = all the needed scales have to be simulated

e Simulate directly into the self-similar space = all the scales have become O(1)
= overcoming numerous numerical obstacles (meshes)

® o include easily viscosity effects:
not done in papers [8], [6], [7] using potential theory

[5] Keller and Miksis, Surface Tension Driven Flows. SIAM 43 (1983)

[6] Day et al., Self-Similar Capillary Pinchoff of an Inviscid Fluid. PRL 80 (1998)

10 [7] Sierou and Lister, Self-similar recoil of inviscid drops. Physics of Fluids 19 (2004)
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* We search for the most general solution to the N-S. equations
while using scale invariant variables, under the form f (X, Y, T), where:

= 1Int

following [8] (logarithmic time).
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[8] Eggers and Fontelos, Singularities:
Formation, Structure, and Propagation.
Cambridge Texts of Applied Mathematics (2015)
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Il - Self-Similar Navier-Stokes 1.2 - Strategy for finding S-I. Solutions

solver with Basilisk

* We search for the most general solution to the N-S. equations
while using scale invariant variables, under the form f (X, Y, T), where:

T =1Int
following [8] (logarithmic time).

 The introduction of the variable t:
= gives an evolution equation in the self-similar space, solved with Basilisk;
= while the problem remains unsteady, the solution is NOT scale invariant;
— Basilisk 1s used to study how the numerical solution converges or not

towards a scale invariant solution, i.e. a solution when d_f — 0 condition is met.

11

Singularities:
Formation, Structure,
and Propagation

[8] Eggers and Fontelos, Singularities:
Formation, Structure, and Propagation.
Cambridge Texts of Applied Mathematics (2015)




1l - Self-Similar Navier-Stokes
solver with Basilisk

Self-similar variables

p 1/3 p 1/3
g=(L) x . v=(L
<0t2> <0t2> Y

X = <)§> ;7= In(?)
Y

Self-similar functions

1/3
u(x, y, 1) = <%> U [R(x, 1), Ty, 1), 2(9)]

2/3
p(x,y, 1) =p <%> P [X(x, 1), Y(y, 1), 7(1)]

Special Notations

L 2/3
 The substitution 7 = v (p/ 0)

+ The notation simplification V = V 5
e The free surface F

e The curvature K

12

[11.3 - Formulation
in the Self-Similar Space



e The curvature K

1l - Self-Similar Navier-Stokes 1.3 - Formulation
solver with Basilisk in the Self-Similar Space

Self-similar variables Self-similar N-S. Equations
new advection term
X:<L>l/3x g <%>1/3y ~ ~ ~ ) ) ) o - A~ —
ot’ ot V-U=0 9U+V-(U®U)=-VP+7 (VU)e™ -U +=V- (X® U)
3 i 3
X = <I7> . 7= In(?) source term

Self-similar functions

1/3
u(x, y, 1) = <%> U [R(x, 1), Ty, 1), 2(9)]

2/3
p(x,y, 1) =p <%> P [X(x, 1), Y(y, 1), 7(1)]

Special Notations

L 2/3
 The substitution 7 = v (p/ 0)

+ The notation simplification V = V 5
e The free surface F
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1l - Self-Similar Navier-Stokes
solver with Basilisk

Self-similar variables

p 1/3 p 1/3
g=(L) x . v=(L
<0t2> (01‘2) Y

X = <):(> . 7= In(?)
Y

Self-similar functions

1/3
u(x, y, 1) = <%> U [R(x, 1), Ty, 1), 2(9)]

2/3
p(x,y, 1) =p <%> P [X(x, 1), Y(y, 1), 7(1)]

Special Notations

Lo 2/3
 The substitution 7 = v (p/ 0)

+ The notation simplification V = V 5
e The free surface F

e The curvature K

[11.3 - Formulation
in the Self-Similar Space

Self-similar N-S. Equations

new advection term

V-U=0 00+V (0@0)=-VP+7 (V0)e™ U +-V- (X0 0)

Init. Cond. propagated Kinematic Condition

~J ~/

FT+(I~J-V)F—§(X-V)F:O

~J

t—>0=>F(X,7) > Xtan(g,) — ¥

| x|l »eo

Far-field Condition Dynamic Condition

~/

U——0 PX Y, =k
| X »co F=0
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1l - Self-Similar Navier-Stokes lll.4 - Strategy for Basilisk solvers
solver with Basilisk

Libraries used:

: cy: ] centered.h —> bcg.h
Two major additions: two-phase.h —> vof.h

1. A new advection velocity A := U — (2/3) X # U the advected velocity contact.h
2. A source term —U in the RHS of the self-similar formulation of the N-S. equations tension.h

— Modularity of Basilisk can be exploited
to tackle these changes!
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1l - Self-Similar Navier-Stokes lll.4 - Strategy for Basilisk solvers
solver with Basilisk

Libraries used:
centered.h —> bcg.h

Two major additions: .
~ ~ ~ ~ wo-phase.h —> vof.h
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« The face advected velocity fJf Is predicted with the face advection

velocity Af In the prediction () function.
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Libraries used:

: cy: ] centered.h —> bcg.h
Two major additions: two-phase.h —> vof.h

1. A new advection velocity A := U — (2/3) X # U the advected velocity contact.h
2. A source term —U in the RHS of the self-similar formulation of the N-S. equations tension.h

—> Modularity of Basilisk can be exploited
to tackle these changes!

In centered.h

« Initialization of a position vector xi[] and a face advection velocity
vector lambdaf[] iIn event init.

« Set the correct velocity for the CFL with lambdaf[] in event
stability.

« The face advected velocity ﬁf Is predicted with the face advection

velocity [&f In the prediction () function.

« The predicted face advected velocity I~Jf Is then projected to be

divergence free and used for updating the face advection velocity Af
needed for the (BCG is NOT modified!) in the

event advection term:
event advection_term (i++,last)

{
if (!stokes) {

[...]
advection ((scalar x){u}, lambdaf, dt, (scalar x){g});

}
}
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Libraries used:

: .- centered.h —> bcg.h
Two major additions: two-phase.h —> vof.h

1. A new advection velocity A := U — (2/3) X # U the advected velocity contact.h
2. A source term —U in the RHS of the self-similar formulation of the N-S. equations tension.h

—> Modularity of Basilisk can be exploited
to tackle these changes!

In centered.h

« Initialization of a position vector xi[] and a face advection velocity

vector 1ambdaf[] in event init. In vof.h
« Set the correct velocity for the CFL with lambdaf[] in event We call the face vector 1ambdaf [] instead of uf[]
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