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Extreme wave loads on offshore structures
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Basilisk from an industrial perspective

= @ystein Lande
= Department: Marine Structures
— Safety & integrity of structures at sea

= Section: Environmental Loading & Response

= Extreme wave loads on offshore structures

http://kobiecarouthers.weebly.com/upload
s/1/8/2/3/18237875/9209698_orig.jpg
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BBC News 2015 (https://youtu.be_/.E)d57CpT—s)

Maersk oil&gas,2016
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Extreme wave loads on offshore structures: Two main challenges

= 1. The modelling of breaking waves
— Model testing
— CFD

= 2. The statistical problem

— Which wave shall we model? (how high, steep,
shape, etc)

— What is the probability of a wave breaking
exactly where my structure is standing?

— Target: wave load with annual probability 10™-4

= Our goal with Basilisk: Run 100’s of wave
simulations
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Modelling of realistic ocean waves in a numerical environment —
Indeed a challenge

= Important factors which influences crest heights, wave shape and breaking limits

— Short-crestedness
— Irregularity
— Wave evolution (breaking)

Typical simulation requirements:
1.5 x 1.5 km domain, 60-80 sec

-)

The past

The present
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Why Basilisk for ocean waves?

https://youtu.be/1KRIpboGX-A

= The vital components for
successfully and effective
modelling ocean waves

— A good numerical
implementation

AMR
Octree mesh

Accurate numeric
implementation

Geometric VOF (PLIC or
more advanced)

Momentum advection (in
case of two-phase flow)

“reduced gravity
approach”

Velocity Magnitude

Tailor-made for wave
propagation?

Basilisk OpenMP, rendered in Paraview & Blender
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Why Basilisk for ocean waves?

https://youtu.be/1KRIpboGX-A

= The vital components for
successfully and effective
modelling ocean waves

— A good numerical
implementation

- AMR

Important questions from a user perspective?
« How good are these waves?

_ Octree mesh Do they break correctly?

_ Accurate numeric  Numerical dissipation?

implementation What is the computational cost?
— Geometric VOF (PLIC or
more advanced)

 Numerical efficiency

: : * Number of CPUs/Simulation time
— Momentum advection (in

case of two-phase flow) « Storage efficiency

— “reduced gravity
approach”

Velocity Magnitude

= Tailor-made for wave
propagation?

Basilisk OpenMP, rendered in Paraview & Blender
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Validation of CFD results

= model test of a wide range of irregular focused wave groups,
with variation of

— Wave spectrum
— directional spreading

— steepness

= Linear wave input known

— Used as input to CFD, corrected
to second order

— No tuning!

Table 3 Events simulated in CFD

* Measurements: Spectrtum Spreading factors Linear amplitude

_ i i i i i B uni-directional 20, 40 and 52 mm
Wave elevation (various locations in the basin) B o 20, 40,55, 70 and 78 mm

— Particle VE'OCity (LDA) D uni-directional 20, 40, 55, 61 mm
D 5=4 20, 55, 70. 85 and 93 mm

OMAE 2018-78288 — Propagation of steep and breaking short-crested waves — A comparison of CFD codes

7 DNVGL® 18 June 2019 DNV-GL



Comparison example

= OMAE 2018-78288 — Propagation of steep and breaking short-crested waves — A comparison of
CFD codes

— Comflow and Basilisk

= Example:
— Spectrum D (narrow banded)
— Spreading s=4

— Linear amplitude 93mm (at the very
limit where breaking was observed)

OMAE 2018-78288 — Propagation of steep and breaking short-crested waves — A comparison of CFD codes
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Ex1: Spectrum D, spreading s=4, Linear ampl 93m — at the very breaking limit
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Ex1: Spectrum D, spreading s=4, Linear ampl 93m — at the very breaking limit
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Ex2: Spectrum D, uni-directional, Linear ampl 61 mm — at the very breaking limit
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Ex2: Spectrum D, uni-directional, Linear ampl 61 mm — at the very breaking limit
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Example of failure to recreate model test wave:
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Comparison conclusion:

= The two codes (ComFLOW & Basilisk) evaluated in the paper seem to be very capable of
propagating waves

— Captures the non-linearities very well
— Numerical energy dissipation — very little (provided the correct schemes are used)
— Waves do not break prematurely
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Performance

= Comparison to other codes

— ComFLOW nttp://poseidon.housing.rug.nl/sphinx/index.htmi

— Basilisk nttp://www.basilisk.fr/

= The big difference: Octree/AMR
— Improves accuracy at desired locations
— Reduced number of cells
— Reduces calculation time and cost
— Reduces storage cost

— Expect runtime to come down with a
better chosen AMR criteria
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http://poseidon.housing.rug.nl/sphinx/index.html
http://www.basilisk.fr/

Long term statistics of breaking wave properties

= Capable of running 100’s of events -> Statistics

= OMAE 2018-78283: Long-term analysis by Event Matching

— Running a subset of events in CFD (100 or more), and use the stored

kinematics to populate the long term distribution

Long-term crest distribution

Distribution of crest velocity

Distribution of wave load (base shear force)
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Summary

= Large progress has been made in the
modelling and understanding of breaking
waves in the ocean thanks to modern CFD
codes such as Basilisk

= Thumps up for embedded boundaries!
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Questions?

Oystein.Lande@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER
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