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Introduction & Motivation

LUBRICATION + COOLING FOR VARIOUS INDUSTRIAL APPLICATIONS 

• Large scale

• With high Reynolds numbers

• Multiphase

• Large-scale applications use URANS (Unsteady Reynolds-Averaged 

Navier-Stokes) for modelling turbulence in industrial applications

CFD work in the group
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• Widely used CFD turbulence models (URANS) do not model 

interfacial turbulence well!

• Currently: CFD uses a semi-empirical method of turbulence 

damping (TD), which is inaccurate for wavy films.

• This impacts our modelling of bearing chambers and 

gearboxes – the models are very sensitive to the choice of 

empirical constants.

Introduction & Motivation



Page 4Page 4

Turbulence Damping
• In CFD models of stratified flow, using a method such as VOF, sharp 

discontinuities in the velocity field at the interface often result in over-

prediction of turbulent kinetic energy at the interface by isotropic turbulence 

models

• This has an impact on the overall mass, momentum and energy transfer across 

the interface

• For smooth interface (non-wavy) stratified flows, Egorov [1] proposed a 

correction to the specific turbulence dissipation – Eqn (1) – which has been 

shown to reproduce wall-like damping at the liquid-gas interface and provide 

more accurate prediction

𝑆𝜔 = 𝐴Δ𝑛βρ𝑖(𝐵
−6μ𝑖

βρ𝑖Δ𝑛
2)
2, (1)

where variable A is used to activate this source term only at the free surface and    

B is the damping coefficient which should be at least 10 [1]. 
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CFD work

GAS

LIQUID
INTERFACE

Effect of interface turbulence damping on the velocity profiles 
of a stratified gas-liquid flow in a rectangular channel [1]

Stratified gas-liquid flow in a horizontal channel

Without TD With TD
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Effect of Turbulence Damping

Bearing chamber test [2]

TDF=100 TDF=10
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DNS/LES
(scale-resolving

methods)

PIV

Improved URANS!

Test Chamber
Representative 
Chamber

Future Work

Cornerstone

Large-scale goal: provide input for improvements of URANS models from scale-resolving methods
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Number of tests with 
varied CFD software

• Open-source free software

• Aims at Direct Numerical Simulations 

• Efficient quadtree/octree grid structure

• Adaptive grid

• Multiple criteria for adaptive grid

• Modifiable

• Possibility to run in parallel

• Periodicity

• Unexplored in our group

Reasons for choosing Gerris:
Advection test

Rising bubble Droplet tracking

Falling droplet
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In the meantime the simulations are set up for a similar 

case where data is already available

Experiments are planned for the near future

Experimental case by Fabre et al. (1987)
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Experimental case by Fabre et al. (1987)

Stratified flow in a channel

PrRes
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RANS vs LES

X-velocity along a vertical line in a cross-section
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• No-slip walls

• Two phases: water at the bottom (0.04m); air at the top (0.06m)

• Refinement: near walls, near the interface + adapted vorticity

Case 2: Periodic (inlet-outlet), 1m long

Simulations Setup

gas

liquid

Case 1: 3m long (problems near outlet)

outflow

Width=0.2m

Height=0.1m

Re=14000

Re=12000
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2.8 M cells

Refnm Lvl 7Vorticity plot (range: 0..500 1/s)

Preliminary Results
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2.8 M cells

Refnm Lvl 7Vorticity plot (range: 0..500 1/s)

Preliminary Results

LES (comm. soft.), 

>14M cells
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Preliminary results

Testing different Re and density ratio

Different Re

Different 

density ratio
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Preliminary Results

Velocities U

U-velocities plot
(cross section)

U-velocities along a vertical line

Smaller case (shorter domain): 

0.6 M cells, Refnm Lvl 7
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Future plans

• Robust methodology for the planned test cases

• New simulations that would represent experimental 

cases

• Comparison of data with experimental data

• Conclusions with regard to turbulence damping

• Potential changes of the models where TD is used  

and publications
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Thank you
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