

Department of Aerospace Engineering & Engineering Mechanics

Injector Dynamics and Atomization Behaviors of Liquid Monopropellants in Pintle Injectors

Jacob Gamertsfelder & Prashant Khare
Department of Aerospace Engineering & Engineering Mechanics
University of Cincinnati

Presented at
The Gerris/ Basilisk Users Meeting
18.06.19

Acknowledgements: CEAS, University of Cincinnati

Outline

- Background
- Current Research and Objectives
- Theoretical formulation
- Model Validation
- Operating conditions and Geometry
- Analysis
- Conclusions and future work

Background/Motivation

Mark 48 Torpedo Lunar Excursion Module SpaceX Merlin Rocket Engine

Current Status and Objectives

Department of Aerospace Engineering & Engineering Mechanics

Current Status and unresolved research issues:

- Limited research exists on the fundamental mechanisms underlying the monopropellant pintle injector dynamics and atomization behaviors
- Most research is dedicated to bipropellant engines.

Objectives:

- Identify the fundamental mechanisms underlying the injector dynamics and atomization behaviors of liquid monopropellants in pintle injectors
- Quantitatively investigate the droplet size distributions and their temporal and spatial evolution
- Conduct parametric studies to investigate these behaviors at a wide range of Weber numbers and operating pressures

Multiphase & Multiscale Challenges

Department of Aerospace Engineering & Engineering Mechanics

multip hase

multiscale

• Discontinuity of material properties at the interface

• Surface tension singularity force active only at the interface

• Frequent topology changes

• Time and length scales vary over several orders of magnitude

Weber number, We	$rac{ ho_{_{g}}U^{2}D}{\sigma}$
Reynolds number, Re	$rac{ ho_{_{g}}UD}{\mu_{_{g}}}$
Density ratio	$rac{ ho_l}{ ho_g}$
Viscosity ratio	$\frac{\mu_l}{\mu_g}$

Governing Equations: Volumeof-Fluid Method (VOF)

Department of Aerospace Engineering & Engineering Mechanics

• Incompressible, variable-density, Navier-Stokes equations:

$$\rho(\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u}) = -\nabla p + \nabla \cdot (2\mu \mathbf{D}) + \sigma \kappa \delta_s \mathbf{n}$$
$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$
$$\nabla \cdot \mathbf{u} = 0$$

Volume fraction, two-phase fluid density and viscosity:

$$\rho(c) \equiv c\rho_1 + (1-c)\rho_2$$
$$\mu(c) \equiv c\mu_1 + (1-c)\mu_2$$

• Advection for volume fraction:

$$\partial_{t} c + \nabla \cdot (c \boldsymbol{u}) = 0$$

Adaptive Mesh Refinement (AMR)

Department of Aerospace Engineering & Engineering Mechanics

Adaptive Mesh Refinement (AMR)

- Gradient and value based refinement
- Cells without AMR 5.49×10^{12}
- Cells with AMR = 28.623 million
- Total reduction = 99.47%
- Min. cell size = $0.305 \mu m$

Validation Of The Model

Department of Aerospace Engineering & Engineering Mechanics

- Model validation will be based upon the work of Vlad Petrescu
- The model validation will be three faceted comparing
 - Spray Angle
 - Sauter mean diameter
 - Physical inspection

Physical Properties	Water (1.6psi)	Chamber gas (air atmospheric)
Density, ρ (kg/m ³)	1000	1.28
Viscosity, μ (Pa·s)	9.532x10 ⁻⁴	1.822x10 ⁻⁵
Surface Tension, σ N/m)	0.	07275

Experimental geometry

Qualitative comparison with experimental measurements

Department of Aerospace Engineering & Engineering Mechanics

From the Experiment

	Height			
Pressure (p ₂)	10 - 25 mm	40 mm	55 mm	70 - 160 mm
1.6 bar	liquid sheet	liquid sheet	ligaments	droplets

Liquid sheet

Ligaments

Droplet formation

Validation: SMD and spray angle comparison with experiment

Department of Aerospace Engineering & Engineering Mechanics

Location from injector	SMD from experiment (µm)	SMD from present calculations (µm)	% error
60 mm	1291.32	1273.74	1.36%
65 mm	1194.56	1242.79	-4.04%
70 mm	1104.14	1101.92	0.20%

60mm

70mm

	Experimental	Present Calculations	% error
Spray angle	31.0	29.7	4.2%

Physical Properties and Geometry

Department of Aerospace Engineering & Engineering Mechanics

pintle movement

u = 3.34 m/s

constant inflow

Pintle Injector Atomization at We=20

Department of Aerospace Engineering & Engineering Mechanics

3-D VOF

Pintle Injector Atomization at We=20

Department of Aerospace Engineering & Engineering Mechanics

t = 0.00

Detailed Physics: Ligament Formation 3-D

Department of Aerospace Engineering & Engineering Mechanics

Side View

- en in his hambishambisha erre -

non-dimensionalized time, t = t*/(d/Uj) = 0.0 - 0.11

Detailed Physics: Ligament Formation 2-D

Department of Aerospace Engineering & Engineering Mechanics

2-D center plane slice

non-dimensionalized time, $t = t^*/(d/Uj) = 0.0 - 0.11$

Detailed Physics: First break-up 3-D

Department of Aerospace Engineering & Engineering Mechanics Axial view 3-D View non-dimensionalized time, $t = t*/(d/U_j) = 0.11-0.21$

Detailed Physics: First break-up 2-D

Department of Aerospace Engineering & Engineering Mechanics

2-D center plane slice

non-dimensionalized time, t = t*/(d/Uj) = 0.11-0.21

Detailed Physics: Sheet Sheering and Break-up

Department of Aerospace Engineering & Engineering Mechanics

3-D VOF - Outside

3-D VOF -Inside

non-dimensionalized time t = t*/(d/Uj) = 0.22 - 0.90

non-dimensionalized time t = t*/(d/Uj) = 0.19

Detailed Physics: Appearance of Kelvin-Helmholtz Instabilities

Department of Aerospace Engineering & Engineering Mechanics

2-D Center Plane Slice

t = 0.50

non-dimensionalized time, t = t*/(d/Uj) = 0.50 - 1.00

Detailed Physics: Droplet Recirculation Vortex Formation

Department of Aerospace Engineering & Engineering Mechanics

2-D Vorticity slice

non-dimensionalized time $t = t^*/(d/Uj) = 1.24 - 1.40$

Detailed Physics: Clumping and Droplet Coalescence Hinders Atomization

Droplet Production Changes with Time

Droplet Production in terms of Probability

Sauter Mean Diameter

$$D_{s} = \frac{1}{\sum_{i} \frac{f_{i}}{d_{i}}}$$

Conclusion

- High-fidelity numerical simulations were conducted to quantitatively identify the atomization of monopropellant pintle injectors was investigated
- By the formation of recirculation zones slowing the flow in the U direction.
- By the ligaments breaking inwards leading to formation of larger droplets
- Droplet distribution analysis shows that droplet coalescences increaces the overall sauter mean diameter
- Droplet distribution analysis also shows an Gaussian droplet distribution with a slowing production rate due to droplet coalescence

Future Investigations

- Investigate and quantify the differences in breakup and droplet distribution for different Weber numbers and operating pressures
- Determine the effect of pintle angle and location on droplet distribution

Questions?

Department of Aerospace Engineering & Engineering Mechanics

t = 0.00

Department of Aerospace Engineering & Engineering Mechanics

Back-up

Sauter Mean diameter Comparison

Department of Aerospace Engineering & Engineering Mechanics

Distance from the Pintle injector in mm

Spray Angle Comparison

Model had a 31 degree half spray angle measured at 10mm