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SURFACE CURRENTS IN THE OCEAN

From the ECCO reanalysis




CAN WE PARAMETERIZE OCEAN
TURBULENCE IN CLIMATE MODELS?



MAIN EQUATIONS

Primitive equations (incompressible and Boussinesq):
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SMALL PARAMETERS AND MULTIPLE SCALES

As in the Reynolds decomposition, we want to split all variables
into a small-scale and large-scale component

But we also use the small parameters to simplify the equations

— Aspectratio|e = H/L
— Rossby number | Ro = U/ fl| (< 1: strong impact of rotation)
— Froude number | Fr = U/N H | (< 1: strong stratification)

— Length ratio |0 = /L

The multiple scale decomposition rely on a good scale separation
between the turbulent eddy scale [ ~ O(Rd) and the planetary
scale L

cf. full derivation in Pedlosky (1984)



THE QUASI-GEOSTROPHIC EQUATION

The trubulent flow evloves according to the quasi geostrophic
eqution from a vorticity equation to the QGPV equation
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— No forcing other than the large scale flow

— Ro (Rossby number) and F'r (Froude number) are slowly
varying in space



THE QUASI-GEOSTROPHIC EQUATION

The trubulent flow evloves according to the quasi geostrophic
eqution from a vorticity equation to the QGPV equation
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THE QUASI-GEOSTROPHIC EQUATION

The trubulent flow evloves according to the quasi geostrophic
eqution from a vorticity equation to the QGPV equation
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NUMERICAL IMPLEMENTATION WITH BASILISK
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— Well suited for a multiple scale
problem

— Good performance for the elliptic
solver




THE LARGE-SCALE

ci: 2.0 m2/s2

y (km)

0 1000 2000 3000 1000 5000
x (km)

SSH

Samelson and Vallis (1997)

stream function (m?/s?)

Equator ® i ® Y

PR

_

Algyp Ay

Vertical section



LINEAR STABILITY ANALYSIS
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EDDY DYNAMICS

stream function; it = 6
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EDDY FEEDBACK ON THE LARGE-SCALE FLOW

Planetary geostrophy

Large-scale stratification
Large-scale currents

yyyyy

Baroclinic instability Inverse cascade
Quasi geostrophy

Small-scale eddies
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