Studying the Atmospheric Boudary Layer Using Basilisk

Antoon van Hooft,

Bas van de Wie

Stéphane Popinet, Chiel van Heerwaarden, Steven van der Linden, Stefan de Roode,

The Atmospheric Boundary Layer

Daytime boundary layer

Nighttime boudary layer

The Diurnal Cycle

Adapted from the book of stull (1988), as presented in Van Hooft et al. (2017)

Turbulence resolving models

https://www.youtube.com/watch?v=0vorZ2_Jr1g

Video courtesy of Jerome Schalkwijk

Resolving the turbulent processes

Daytime boundary layer

Nighttime boudary layer

Adaptive Grids to the Rescue!

Introduce the method with a test case

Adapted from Van Heerwaarden and Mellado, (2016), as presented in Van Hooft et al. (2017)

Initial convective instability

Growth of the boundary layer

Subsequent decay

 $x/\mathcal{L}\left[ight]$

Results

Interested?

Van Hooft et al.

Towards adaptive grids for Atmospheric boundary layer simulations

Boundary Layer Meterology

Provisionally accepted

Adaptivity

Performance

To be Continued

Current / future work

- Large Eddy Simulations
 - Vreman sub-grid-scale model implemented
 - Testing is in progress

• Analysis of the scale separation in the atmosphere

- Baslisk for Global Circulation Models (GCM)
 - A few slides

Single Collumn Models as building blocks for GCMs

Image Couresy of Tom Morris

Results

Van Hooft et al. (in prep.)

Resolution

Conclusion

The usage of adaptive grids opens new possibilites for atmospheric boundary layer research

