

Viscoelastic jet formation with impulsive boundary motion using Basilisk

J. Fluid Mech. (2012), vol. 709, pp. 341-370

Emre Turkoz, Luc Deike, Craig B. Arnold with Jens Eggers November 16th, 2017 Princeton,NJ

Motivation

Need of Printing Viscoelastic Materials

Flexible electronics

Dababneh, J. Manuf. Sci. Eng 136(6), 061016 (2014)

3D printing

Azimi, Environ. Sci. Technol 50, 1260-1268 (2016)

Sensors

Muth, Adv. Mater. 26, 6307-6312 (2014)

Tissue engineering

Koch, Biotech. Bioeng. 109.7 (2012)

Printing Techniques

 Nozzle should be designed for the ink and application

- Clogging
- Drop diameters \geq 10 μ m

Laser-induced forward

Description of our technique

Blister-Actuated Laser-Induced Forward Transfer

J. Fluid Mech. (2012), vol. 709, pp. 341-370

BA-LIFT has many parameters

0.1 wt.% xanthan gum in water - A viscoelastic solution

Outline of our study

Problem Statement

Problem Setup

Impulsive Boundary Deformation

Empirical profile fits for blister profiles

[1] Brown, M. S., Brasz, C. F., Ventikos, Y., & Arnold, C. B. (2012). Impulsively actuated jets from thin liquid films for highresolution printing applications. Journal of Fluid Mechanics, 709, 341-370.

Non-dimensionalization of the Problem

Experimental parameters

μ _a	Air viscosity
μ	Liquid viscosity
ρ _a	Air density
ρι	Liquid density
γ	Surface tension
$ au_{ m b}$	Blister expansion time
R _b	Blister radius

Dimensionless numbers

Modeling the solid layer [1,2,3] & Algorithm

- Solid layer is represented with a tracer (f12)
- Reinitialized every time step
- Velocity values throughout the solid are assigned at each
 time_step_____

[1] Lin-Lin, Z., Hui, G., & Chui-Jie, W. (2016). Three-dimensional numerical simulation of a bird model in unsteady flight. Computation & MeShanics, 58(1), 1-11.
 [2] Wu, C. J., & Wang, L. (2007). Direct numerical simulation of self-propelled swimming of 3d bionic fish school. Computational Mechanics, Proceediff of ISCM.

[2] http://bacilick.fr/candbay/papingt/papyingsylinder.c

Results

Comparison of different parallelization schemes

Grid Convergence

Validation with Experiments

Now: Viscoelastic Models

The log-conformation technique

A Sidetrack from BA-LIFT: Viscoelastic Simulations in

Possible thanks to the model **Pasingle**mented by Jose M. Lopez-Herrera Sanchez [2]

Log-conformation technique to overcom $\tau = \tau_{\rm S} + \tau_{\rm P}$ $\nabla \cdot \boldsymbol{u} = 0,$ $\tau_{\rm S} = 2n_{\rm S} D$ $D = (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\rm T})/2$

$$\underset{\text{tensor!}}{\text{Conformation}} \rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) = -\nabla p + \nabla \cdot \boldsymbol{\tau}$$

$$rac{\partial \mathbf{c}}{\partial t} + \mathbf{u} \cdot
abla \mathbf{c} - (
abla \mathbf{u} \cdot \mathbf{c} + \mathbf{c} \cdot
abla \mathbf{u}^T) = f_s(\mathbf{c}) \; ,$$

$$\boldsymbol{\tau}_{\mathrm{S}} = 2\boldsymbol{\eta}_{\mathrm{S}}\boldsymbol{D} \quad \boldsymbol{D} = (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathrm{T}})/2$$
$$\boldsymbol{\tau}_{\mathrm{P}} = G_{0}\boldsymbol{f}_{\mathrm{S}}(\boldsymbol{c}) \quad G_{0} = \lambda_{p}/\eta_{p}$$

$${
m De}=rac{\lambda_p}{\sqrt{
ho h^3/\gamma}} ~~~eta=\mu_s/\mu_0$$

 $egin{aligned} \mathbf{Oldroyd-} & \mathbf{FENE-P} \ \mathbf{f}_s(\mathbf{c}) = \mathbf{c} - \mathbf{I} & f_s(\mathbf{c}) = rac{\mathbf{c}}{1 - tr(\mathbf{c})/L^2} - \mathbf{I} \end{aligned}$

[1] R. Fattal and R. Kupferman. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation.
 Journal of Non-Newtonian Fluid Mechanics. 1, pp. 23–27, (2005).
 [2] http://basilisk.fr/sandbox/lopez/log_conform_1.h

Comparison with a 1D explicit finite-difference solution of Oldroyd-B model

Verifying the Oldroyd-B model: Comparison with Clase

[1] Clasen, C., Eggers, J., Fontelos, M. A., Li, J., & McKinley, G. H. (2006). The beads-on-string structure of viscoelastic threads. Journal **4**6 Fluid Mechanics, 556, 283-308.

Minimum Filament Radius vs. Time

Oldroyd-B with Basilisk: Accuracy

Oldroyd-B with Basilisk: Accuracy

A note on Oldroyd-B: Comparison with Experiments

[1] Clasen, C., Eggers, J., Fontelos, M. A., Li, J., & McKinley, G. H. (2006). The beads-on-string structure of viscoelastic threads. Journal **20** Fluid Mechanics, 556, 283-308.

Simulating BA-LIFT with Oldroyd-B and FENE-P

Viscoelastic BA-LIFT simulations

Unique Jet Features during BA-LIFT with Viscoelastic

Inks

Jetting without breakup

Multiple-drop formation

Viscoelastic BA-LIFT simulations

>1s

0.1 wt.% PEO in 60-40 wt.% WG

342 us

Strategy: Try to observe these features with a parameter sweep and compare with experimental parameters!

Maybe the answer lies in a new model!

Future Work

instability!

[1] Eggers, J. (2014). Instability of a polymeric thread. Physics of Fluids, 26(3), 033106.

Acknowledgements

- Members of the Arnold group
- Jose M. Lopez-Herrera
 Sanchez for numerous e-mail exchanges
- Prof. Jens Eggers
- Antonio Perazzo and Prof. Howard A. Stone

Future Work: We need to implement a better model! [1]

$$\rho \frac{D\mathbf{v}}{Dt} = -\nabla p + \nabla \cdot \boldsymbol{\sigma}_p + \eta_s \Delta \mathbf{v}$$

Experimental observation: Polymer concentration is very high along the thread

$$\frac{D\sigma_{p}}{Dt} = (\nabla \mathbf{v})^{T} \cdot \sigma_{p} + \sigma_{p} \cdot (\nabla \mathbf{v}) - \frac{\sigma_{p}}{\lambda} + nk_{B}T \left((\nabla \mathbf{v})^{T} + (\nabla \mathbf{v}) \right) - k_{B}T \frac{Dn}{Dt} \delta + D \Delta \sigma_{p}$$

$$\frac{Dn}{Dt} = -\frac{D}{k_{B}T} \nabla \nabla : \sigma_{p} + D \Delta n$$

$$n$$
Polymer number density
Delymer at the expression of the set of the expression of the

Perturbation analysis yields a novel mechanism for an instability which grows sinusoidally and might explain the formation of beads-on-a-string structure

- σ_{p} Polymer stress component
- η_{s} Solvent viscosity
- λ Relaxation time
- D Diffusivity of polymer in the solvent
- $\boldsymbol{\delta}$ Unit tensor

Minimum Filament Radius vs. Time

$$h(t) = h_0 \exp(-1/3\mathrm{De}^*)$$

De	De 94.9 60	h _o 0.2520 0.3045	De* 96.57 56.84	De*
	50 40	0.3343	48.34 38.46	_
94.9	0.2	2520)	96.57
60	0.3	3045	5	56.84
50	0.3	3343	3	48.34
40	0.3	3835	5	38.46

Viscoelastic BA-LIFT simulations

Effect of elasticity on BA-LIFT jets Still localized pinch-off & beads-on-a-string not

		<u></u>
De = 0.2	De = 0.4	De = 0.6
Oh = 0.2	Oh = 0.2	Oh = 0.2
b=1000	b=1000	b=1000
		N 2000

Maximum Axial Stress along the Filament vs. Time

$$\sigma_{zz}(t) = \sigma_0 \exp(1/3\text{De}^*)$$

$$\sigma_0 = 2/h_0$$

De	De h₀ σ₀ De* 94.9 0.2374 7.564 77.88 60 0.3045 5.063 47 50 0.3243 4.616 43.75 40 0.3835 3.918 35.43	D0 h ₀ σ ₀ D0* 94.9 0.2374 7.564 77.88 60 0.3045 5.063 47 50 0.3343 4.616 43.75 40 0.3835 3.918 35.43	De*
94.9	0.2374	7.564	77.88
60	0.3045	5.063	47
50	0.3343	4.616	43.75
40	0.3835	3.918	35.43