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Motivation

Liquid propellant injection for space propulsion

Automobile and gas turbine etc.

The atomization of liquid propellants in rocket

and spacecraft engines is so poor that the i
primary breakup and flames interacts each other. \rw '

Evaporation/mixing

Fine spray

Two-phase flow (primary breakup) and chemical
reaction (flame) should be modeled in a CFD code.

Rocket and spacecraft engines

Atomization Flame
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Key physical models

Two-phase

Phase change

\—
Droplet cloud

Compressibility

7 pressure wave

Chemical reaction  Multicomponent fluids
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Key physical models

Two-phase

Phase change

“All-speed” multiphase

7

Chemical reaction

reactive flow simulator

Mu;;icomponent fluids :Q

i
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Compressibility

Acoustic wave

Institute of
Technology



N-S solver for all-speed flows

Density-based solver

Density fields are directly calculated by N-S
egns in the conservative form. Then, the
pressure are expected by using a EoS.

Fully conservative
Fast calculation per one step

High-order scheme

—

Compressible (high-speed) flows

"k

Simscale.com

TCUP method

Pressure-based solver

N-S egns are transformed to the non-
conservative form. Pressure fields are extracted
by solving a pressure eqgn. which couples with
velocity egns.

Larger time step (At)

Easy to model two-phase flow

—

Incompressible (low-speed) flows

Supercomputer “Kei” 2016

Low-Mach number method
Preconditioning method
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Governing equations

Non-consevartive forms of compressible N-S egns.
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TCUP method

n step

Temperature-Coupled Unified Procedure (TCUP) (Yabe et al. 1991, Himeno et al. 1999)
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Shock-bubble interaction
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Comparison with results of

a density-based solver
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The present method can be adapted to

supersonic (compressible) flows.

Technology

Institute of



Extinction of premixed flame

Temperature

0.0

€ Investigated dominant chemical reactions in the
flame extinction of premixed natural gases.

@ A reaction model of 17 species and 58 reactions.
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New CFD code

Two-phase

Phase change

“All-speed” multiphase <=
reactive flow simulator

Chemlcal reaction M(Q) mponent fluids x Compressibility

Operator-splitting CANTERA TCUP method
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CLSVOF : Coupled Level-set and VOF

CLSVOF: Combination of Level-set and PLIC-VOF method

p
Volume of Fluid (VOF) Hv W Level-set function ¢ e anofim ek fmolan
Liquid: Hs= 0.5, ¢ >0 ~ ambent fluid
[/ @<0 |He=-0.5
Interface: Hs= 0, ¢ =0 N
Gas: Hs=-0.5, ¢ <0 """
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Solve cell-integrated form Solve by CIP method N
by PLIC-VOF method (Sharpe interface) (Himeno et al. 1999)
(Mass conservation)
Normal vector of interface i
| i
L Reinitializatior} based on VOF ‘

Calculation of thermodynamic properties i
p=1(0.5—Hs)py + (0.5+ Hs)p . [

0 0.2 04 06

STEP=000000

A i L AC
7 Institute of 1 1
Technology



Dam break test (1/2)

Experiments (Koshizuka et al.)

0.2s 0.4s 0.6s 0.8s 1.0s

A trapped bubble
Only VOF in 2D
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Dam break test (1/2)

Experiments (Koshizuka et al.)

0.2s 0.4s _ 0.6s 0.8s | 1.0s

CLSVOEin3p  Atrapped bubble

|

Time =0.40s

The present method well captured the
dynamics of liquid surfaces
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Dam break test (2/2)

Experiments (Koshizuka et al.)
0.3s 0.4s 0.5s

-

CLSVOF in 3D

B 0 o’

Time=010s Time =020s Time=030s

The present method precisely captured
the dynamics of liquid-gas interfaces.
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Breakup of impinging liquid jets

Liquid fan - -
Impingement-type injector K-H instability

Ligament

Droplet
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Phase change

Unknown variable : 2+N (Phase change rate, temperature and mass fractions on surface)

Constraint conditions : 2+N (Jump conditions, Phase equilibrium with Antoine eqn.)

Liquid cell  Gaseous cell Phase change rate : 1 [kg/(s*m?)]
Latent heat : hlg[J/kg]

Jump conditions (1+N eqgns.)

® —~—> 0

. r r
Pure fuel, | Gas mixture, mmhig + (AVT), = (AVT),
i & 1 = Y+ L
Surface, (I') g Y, ;=1 only when s=fuel
Phase equilibrium (1 egn.) r
g - Py, fuel — exp [hlnguel ( 1 B 1 )}
) Clausius-Clapeyron pg,tot R TB 7T
r
i Py, fuel _ T r I T
\ Partial pressure L2 = Xg Fuel (Yg,ng,zaYg,s : )
pg,tot
Tg is a saturated temperature of pure fuel at the total pressure.
B
' . Ip = —-C r __
Antoine eqn. 1 A 10810 (Py 00) Pg.tot = Pgtot
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Assumption and solution

€ Transport coefficients are directly interpolated from those on cell center.

A=\, D,=D"

@ Diffusion coefficients of all species are equal to the mixture-averaged diffusion coefficient

of liquid species.

D1:D2:"':DN:Dfuel

Then, unknown variables can be solved by using the bisection method.

(DGive the maximum and minimum of temperature (7,

T

min)

ax’

Next tteration

7

Nl ®Trmid - (Tmax+Tmin)/2

\ 4

(®Phase change rate

cmax (T — Ty,,,4,0)
0577y,

m= A

\ 4

(®Mass fractions on liquid-gas surface

. e Y
mas,fuel + (pruel) 05A

YF — . T

s ) c 1
m + (PDfuel) 0.5A

(BMole fraction of fuel

Xjrf‘uel (YIFv }/2F o JYI{T‘)

(®Partial pressure of fuel

r
—> pffel — exp [hlnguel
Piot R

(7o 7))
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Evaporation of n-heptane droplet

Initial conditions

Hot N2 gas (471 K)

2mm

n—heptane;d roplet
(297 K)

vel [ms]
01

0075
005
T 0.025
= 0
.
:

2mm

The evaporation was induced
by the mass diffusion
near the liquid surfaces.

'_"‘7!‘—

I I Institute of 18
Technology



New CFD code

Two-phase Phase change

CLSVOF Jump conditions
& Phase equilibrium

“All-speed” multiphase <~
reactive flow simulator

o

Chemi cal reaction Mu;tlcomponent fluids x Compressibility
Operator-splitting CANTERA TCUP method
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Summary

An all-speed CFD code is being developed to simulate the interaction between the
primary breakup and flames in spacecraft engines.

The TCUP method was programed in Basilisk. Also, CLSVOF, chemical reaction and phase

change model were implemented. The new code showed the advantages of the present
algorism for compressible/incompressible, two-phase and reactive flow simulations.

Future works,

@ Find a way to relax the pulsatile velocity increase due to the phase change and
validate the phase change model.

€ Apply the new code to simulations of a burning liquid droplet or jet.
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