Basilisk/Gerris Users' Meeting 2017

WASHINGTON STATE UNIVERSITY VANCOUVER World Class. Face to Face.

Gerris: a Powerful Modeling Tool for Capillary Flows

Hua Tan (PhD) Email: hua.tan@wsu.edu School of Engineering and Computer Science 14204 NE Salmon Creek Ave. Vancouver, WA

Basilisk/Gerris Users' Meeting 2017, Princeton, NJ, USA

Outline

- How do I get started with Gerris
- Droplet formation in Inkjet process
- Capillary flow in low-gravity
- Droplet-media interaction
- Future work

*H. Tan, Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces. *Computers & Fluids*, 2017. 154: p. 142-166.

How do I get started with Gerris

HP's drop-ejection simulation tool: CFD3*

- Uniform Cartesian grid
- Stair-step method for solid geometry
- Naiver-Stokes for liquid phase
- Drive-bubble dynamics
- Contact angle model
- Algebraic calculation based Volume of Fluid
- Height-function for curvature calculation
- Surface-tension directly applied to interface cells

Original CFD3 has a problem in conserving the momentum!

*H. Tan, et al., Numerical simulation of droplet ejection of thermal inkjet printheads. *International Journal for Numerical Methods in Fluids*, 77(9), 544-577, 2015.
H. Tan, et al, Validation of an in-house 3D free-surface flow solver in inkjet printing, *the 2nd* ASME Verification and Validation Symposium, May 22-24, Las Vegas, Nevada, 2013.

Basilisk/Gerris Users' Meeting 2017

Flow3D simulation

How do I get started with Gerris

- Curvature calculation for under-resolved cells paraboloid-fitted method^[1]
- Geometrical calculation based VOF Piecewise Linear Interface Calculation^[2]

 \mathcal{K} (height function): -0.373 \mathcal{K} (parabola-fitting): 0.404 Analytical: 0.42

[1]Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows. *Journal of Computational Physics*, 2009. **228**(16): p. 5838-5866.

[2]Gueyffier, et al., Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows. *Journal of Computational Physics*. **152**(2), 423-456, 1999.

How do I get started with Gerris

Can Gerris be used to simulate droplet ejection in thermal inkjet process?

Need to know...

- Various numerical methods implemented in Gerris, including NS solver, VOF, cut-cell for solids, boundary conditions, parallel implementation, Oct-tree adaptation, ...
- Gerris style for program flow (e.g. GfsVariable, GfsEvent, GfsSource, GfsFunction, GfsOutput,...)
- Object-oriented programming using only ANSI-C*;

Learning curve is steep if you want to adapt Gerris for modest complex problems!

* Object Oriented Programming with ANSI C, Axel-Tobias Schreiner, 1993

Static uniform grid becomes too coarse locally as free-surface flow develops.

High computational cost for solving flow of large domain.

drop-flight problem directly.

Outline

- How do I get started with Gerris
- Droplet formation in Inkjet process
- Capillary flow in low-gravity
- Droplet-media interaction
- Future work

Drop-on-Demand (DOD) Thermal Inkjet (TIJ)

Cross-section

Schematic of a firing chamber structure

Basilisk/Gerris Users' Meeting 2017

Droplet-ejection sequence in TIJ

High-speed imaging of TIJ

TIJ boiling: heat flux1-2 x10⁹ W/m². (Sun surface ~6.58 x10⁷ W/m²)

- 1. Thin film heating
- 2. Boiling incipience (pre-nucleation)
- 3. Boiling
- 4. Vapor bubble expansion & collapse
- 5. Rebound
- 6. Vapor bubble disappears

Drive bubble dynamics

- Assume that the adiabatic expansion and collapse of the drive bubble follow a polytropic process ($pV^n = constant$).
- Bubble can split and merge due to geometry constrains.
- Velocity in empty cells adjacent to vapor-liquid interface is extrapolated for calculation the advection and viscous terms conveniently without the irregular computing stencils*

$$\Gamma = \sum_{k=1}^{N} \left(\mathbf{u}_{o} + \mathbf{A} \cdot \mathbf{x} - \mathbf{u}_{k} \right)^{2} + \lambda \mathbf{t} \cdot \left(\mathbf{A} + \mathbf{A}^{T} \right) \cdot \mathbf{n}$$

*Popinet, S. and S. Zaleski, *Bubble collapse near a solid boundary: a numerical study of the influence of viscosity.* Journal of Fluid Mechanics, 2002. **464**: p. 137-163.

Vapor

Contact angle model

Capillary force plays an important role in the refill of the firing chamber.

A fictitious height function in the solid wall can be calculated by

$$h_{i-1} = h_i + \frac{\Delta}{\tan\theta}$$

When the normal direction \mathbf{n}_{w} of the wall is not aligned with the Cartesian directions.

$$h_{i-1} = h_i + \frac{\Delta}{\tan\left(\theta - \beta\right)}$$

Calculation of 3D case is more complicated than that for 2D case, especially when \mathbf{n}_{w} is not aligned with the Cartesian direction.

Gerris implementation

- Create a new event class 'drive_bubble_event' to handle the drive bubble dynamics (e.g. initialize the drive bubble parameters, flag drive bubble, calculate drive bubble volume, pressure, track the bubble state, etc.).
- Create a new method '**gfs_diffusion_bubl**' to handle the solution of provisional velocity (in fractional-step projection method for NS equations) involving vapor-liquid interface. $\rho^{n+1/2} \left[\frac{\mathbf{u}^* - \mathbf{u}^n}{\Delta t} + \left(\mathbf{u}^{n+1/2} \cdot \nabla \right) \mathbf{u}^{n+1/2} \right] = \nabla \cdot \left[\mu^{n+1/2} \left((2 - \beta) \mathbf{D}^n + \beta \mathbf{D}^* \right) \right] + \left(\sigma \kappa \delta_s \mathbf{n} \right)^{n+1/2}$
- Create a new method 'gfs_poisson_solve_bubl' to handle the solution of the Poisson equation involving vapor-liquid interface. $\nabla \cdot \left[\frac{\Delta t}{\rho^{n+1/2}} \nabla p^{n+1/2} \right] = \nabla \cdot \mathbf{u}^*$
- Implement a 3D version of GfsVariableTracerVOFHeight in vof.c
- Create a new class 'surface_angle_bc_class' to specify the contact angle for solid walls and implement relevant curvature calculation adjustment in vof.c.
- Create a few new methods in GerrisOutput (e.g. statistics of droplets, interface segments, tecplot output, etc.)
- Clean bugs especially when a complex solid geometry present.

Gerris implementation

4 3 GfsSimulation GfsBox GfsGEdge {} { Global { #define LEVEL 7 #define GRAVITY 980 #define MU_L 1.3e-2 #define MU_G 1.8e-4	<pre>// initial drive bubble static double drive_bubble (double x, double y, double z) { if (fabs(z) >= Z_t) return -1.; else if (y < Noz_t && !(x > -11e-4 && y < -37.9e-4)) return 1.;</pre>	EventBalance {istep=1} 0.1 OutputBalance {istep = 1} balance GfsOutputSimulation { step = .25e-6} file-inkjet-vof-%ld.gfs GfsOutputSimulation { step = .25e-6 } tecplot-%ld.dat {variables= U,V,W,P,Tsolid=0 format = Tecplot} GfsOutputTiming { istep = 20 } stdout }	box4
<pre>#define RHO_L 1. #define RHO_G 1.e-3 #define var(T,min,max) (CLAMP(T,0,1)*(max - min) + min) #define rho(T) var(T, RHO_G/RHO_L, 1.) #define mu(T) var(T, MU_G/MU_L, 1.) #define Z_t 22e-4 #define Xez t 10e 4</pre>	else return -1.; } } GfsTime { end = 40.e-6 } GfsRefine 1 GfsRefineSolid LEVEL GfsSolid solid.gts VariableTracerVOFHeight {} T	GfsBox {bottom = Boundary { BcDirichlet T T0 BcDirichlet P pressure_refill(x,y,z,P) BcNeumann V 0 BcDirichlet U 0 BcDirichlet W 0 } right = BoundaryOutflow left = BoundaryOutflow front = BoundaryOutflow back = BoundaryOutflow } GfsBox { pid = 1 right = BoundaryOutflow left = BoundaryOutflow	box3
<pre>#define Noz_t -10e-4 #define PA 1.01e6 #define P_back 9950 // back pressure static double pressure_refill (double x, double y, double z, double P) { if (x < -27e-4 && y <= -48e-4 && fabs(z) < Z_t) return -P_back;</pre>	Variable 10 InitFraction T0 (vof_bc(x, y, z)) VariableFiltered T1 T 3 InitFraction {} T (drive_bubble(x, y, z)) PhysicalParams {L = 100.e-4 alpha = 1/rho(T1)/RHO_L } SourceViscosity MU_L*mu(T1) VariableCurvature K T Kmax SourceTension T 50 K AdaptFunction { istart = 1 istep = 1 } {cmax = 0.1 maxlevel = LEVEL cfactor = 2 } (T > 0 && T < 1)	<pre>front = BoundaryOutflow back = BoundaryOutflow } GfsBox { pid = 2 right = BoundaryOutflow left = BoundaryOutflow front = BoundaryOutflow back = BoundaryOutflow } GfsBox { pid = 3 right = BoundaryOutflow left = BoundaryOutflow front = BoundaryOutflow back = BoundaryOutflow</pre>	box2
return P; } // vof boundary static double vof_bc (double x, double y, double z) { if (y < -48e-4 && fabs(z) <= Z_t) return 1.;	GModule drive_bubble DriveBubble {} T {direction = 2 crit_factor = 8. p_high = 8e6 p_floor = 3.e5 pa = PA} SurfaceAngleBc T 40	top = BoundaryOutflow } 1 2 top 2 3 top 3 4 top	box1
else return -1.; Basilisk/Gerris Users' Meeting 2017	Gerris		

Simulation Examples*

Vapor bubble behavior in TIJ firing chamber

Voltage 26V, pulse width 3us, water at 25°C, Domain size is 130 μ m×130 μ m×130 μ m, the finest level L= 8, Δ_{min} =0.75 μ m.

Input parameters

Variable	value
Viscosity µ	0.001 kg/ms
Surface tension σ	0.07 kg/s2
Density p	1000 kg/m3

Inflow region connected to ink revoir

Basilisk/Gerris Users' Meeting 2017

Simulation Examples*

droplet-ejection simulation

- Domain size:125µmX125µmX625µmL_{max}: 8, Δ_{min}: 0.5µm. The mesh is adaptive to the interface curvature and local velocity gradient.
- Summary of results

	Experiment	Simulation	
Droplet weight(ng)	9.8	10.1	
Droplet speed (m/s)	15.4	15.3	
Refill frequence (kHz)	20	16	

Variable	value		
Viscosity y	0.011 cm ² /s		
Surface tension σ	40 dyn/cm		
Density p	1.0 g/cm3		
Contact Angle	45^{0}		

Basilisk/Gerris Users' Meeting 2017

Basilisk/Gerris Users' Meeting 2017

Simulation Examples*

droplet-ejection simulation

Parallel performance

Basilisk/Gerris Users' Meeting 2017

Simulation Examples*

droplet-ejection simulation

Effect of parallel computation on solution

1/4 model

½ model

full model

Time=0µs

Simulation Examples

full-model, 1/4-model, and 1/2-model

Outline

- How do I get started with Gerris
- Droplet formation in Inkjet process
- Capillary flow in low-gravity
- Droplet-media interaction
- Future work

Puddle jump*

2.1-s drop tower facility at Portland State University ($g \le 2 \times 10^{-4} g_o$).

A puddle jumps from superhydrophobic surface in low-g condition.

Basilisk/Gerris Users' Meeting 2017

*Wollman, A. and M. Weislogel, *New investigations in capillary fluidics using a drop tower*. Experiments in Fluids, 2013. **54**(4): p. 1499.

Basilisk/Gerris Users' Meeting 2017

*Attari, B., et al, *Puddle jumping: Spontaneous ejection of large liquid droplets from hydrophobic surfaces during drop tower tests.* Physics of Fluids, 2016. **28**(10): p. 102104.

0.55

droplet 30mi flat time t+0.55r 0.75

chopier 30mi fil ferne t+0.75s

Puddle jump

Puddle jump

Basilisk/Gerris Users' Meeting 2017

*Attari, B., et al, *Puddle jumping: Spontaneous ejection of large liquid droplets from hydrophobic surfaces during drop tower tests.* Physics of Fluids, 2016. **28**(10): p. 102104.

Capillary migration in super-hydrophobic wedges*

Basilisk/Gerris Users' Meeting 2017

*Torres, L., et al., Large droplet generation by capillary migration in super-hydrophobic wedges, 33rd Annual Meeting of the American Society for Gravitational and Space Research, ID306, Seattle, Oct. 25-28, 2017.

Capillary migration in super-hydrophobic wedges*

28, 2017.

Capillary migration in super-hydrophobic wedges*

Basilisk/Gerris Users' Meeting 2017

a.

*Weislogel., et al., Capillary channel flow EU2-02 on the international space station: an experimental investigation of passive bubble separations in an open capillary channel, NASA/TM-20150218720.

Auto-ejection*

Figure 3.3: Spontaneous capillary rise of 0.65cS PDMS in a 73.5mm long, 9.2mm ID circular tube (images at 10Hz). The 3.88mm tube nozzle exit ID produces a transient jet which eventually breaks up into $6 \approx 0.02$ ml drops.

*Wollman, A. and M. Weislogel, *New investigations in capillary fluidics using a drop tower*. Experiments in Fluids, 2013. **54**(4): p. 1499.

Outline

- How do I get started with Gerris
- Droplet formation in Inkjet process
- Capillary flow in low-gravity
- Droplet-media interaction
- Future work

Droplet impact on glass surface* Ink droplet

U₀=0.57m/s (We=27)

Simulation predicts much higher rebound. Dynamic surface tension plays an important role.

Basilisk/Gerris Users' Meeting 2017

*H. Tan, Absorption of Picoliter Droplets by Thin Porous Substrates. *AIChE Journal*, 2017, 63(5): p. 1690-1703.

Droplet impact on glass surface* Water droplet

Basilisk/Gerris Users' Meeting 2017

*H. Tan, Absorption of Picoliter Droplets by Thin Porous Substrates. *AIChE Journal*, 2017, 63(5): p. 1690-1703.

Droplet impact on powders

High-speed sintering 3D printing machine

HSS 3D printing process: (a) powder is deposited on the build area by a roller; (b) A radiation absorbent ink is printed on desired area of the powder layer; (c) An infrared radiation source scans the entire build area; (d) The powder area masked by the ink is sintered and the entire process is repeated until the part is completed.

Drop impact on loose powder

Basilisk/Gerris Users' Meeting 2017

*H. Tan, Three-dimensional simulation of micrometer-sized droplet impact and penetration into the powder bed. *Chemical Engineering Science*. 2016, 153: 93-107.

Basilisk/Gerris Users' Meeting 2017

*H. Tan, Three-dimensional simulation of micrometer-sized droplet impact and penetration into the powder bed. *Chemical Engineering Science*. 2016, 153: 93-107.

Droplet impact on powders*

Impact velocities U₀=5m/s Powder pack density is 0.4869 particle diameter=20µm Ink droplet diameter 36.68µm

Basilisk/Gerris Users' Meeting 2017

*H. Tan, Three-dimensional simulation of micrometer-sized droplet impact and penetration into the powder bed. *Chemical Engineering Science*. 2016, 153: 93-107.

Droplet impact on microstructured surfaces

Water droplets impact on substrates that consist of square-shaped pillars of w=0.3mm h=0.3mm s=0.3mm between pillars. (Sivakumar, et al. Physics of Fluids, 2005)

 D_o =2.99mm, U_o =1.96 m/s. The corresponding We=158.3 and Re= 5895

Robson and Willmott. Soft Matter, 2016

Droplet impact on microstructured surfaces

Water droplets impact on substrates that consist of square-shaped pillars of w=0.3mm h=0.3mm s=0.3 mm between pillars. (Sivakumar, et al. Physics of Fluids, 2005)

 D_o =2.99mm, U_o =1.96 m/s. (We=158.3 and Re= 5895)

Droplet impact on microstructured surfaces* $D_o=10 \ \mu m$

Uo (m/s)	We	Re	w (µm)	s (µm)	h (µm)
25	86.6	250	0.5	0.5	0.5
			0.5	1.0	0.5
			0.5	1.5	0.5
50	342.5	500	0.5	0.5	0.5
			0.5	1.0	0.5
			0.5	1.5	0.5
			0.5	0.5	1.0
			0.5	1.0	1.0
			0.5	1.5	1.0
100	1369.9	1000	0.5	0.5	0.5
			0.5	1.0	0.5
			0.5	1.5	0.5
			0.5	0.5	1.0
			0.5	1.0	1.0
			0.5	1.5	1.0

*H. Tan, Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces. *Computers & Fluids*, 2017. **154**: p. 142-166.

Top view

Side view

Wetted region where gaps of pillars are nearly filled with liquid.

Droplet-media interaction

Jets in on-axis directions. T

Thin lamella becomes unstable.

Basilisk/Gerris Users' Meeting 2017

*H. Tan, Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces. *Computers & Fluids*, 2017. **154**: p. 142-166.

Droplet impact on microstructured surfaces*

Basilisk/Gerris Users' Meeting 2017

*H. Tan, Numerical study on splashing of high-speed microdroplet impact on dry microstructured surfaces. *Computers & Fluids*, 2017. **154**: p. 142-166.

Outline

- How do I get started with Gerris
- Droplet formation in Inkjet process
- Capillary flow in low-gravity
- Droplet-media interaction
- Future work

UNIVERSITY ANCOUVER VoF Vapor Temperature **Future work** p: 0.00179639 0.00746429 0.0131322 0.0188001 0.024468 0.1s **Thermocapillary flow*** 301.48 301.975 302.47 p: 0.00179639 0.00746429 0.0188001 0.02446 0.25s Print next droplet after Inkjet drying of previous one printing Evaporation 299.995 300.49 300.985 301.48 301.975 p: 0.00179639 0.00746429 0.0131322 0.0188001 0.5s Print one droplet at a time diatom 🔾 Ag glass 촱 target recirculation flow 300.49 300.985 301.48 301.975 302.47 p: 0.00179639 0.00746429 0.0131322 0.0188001 0.02446 0.75s (a) **Prime Pore** 300.49 300.985 301.48 301.975 302.47 p: 0.00179639 0.00746429 0.0131322 0.0188001 0.02446 1.0s 5 µm

Basilisk/Gerris Users' Meeting 2017

Kong X, et al., Optofluidic Sensing from Inkjet-Printed Droplets: the Enormous Enhancement by Evaporation-Induced Spontaneous Flow on Photonic Crystal Biosilica. *Nanoscale*. 2016, **8**(39): p. 17285-17294

WASHINGTON STATE

Future work

Thermocapillary flow

0.1s

Gerris

Ó

Thank you for your attention!

