
Higher order methods for Poisson and

Advection equations

Rajarshi Roy Chowdhury

November 16, 2017

Institut Jean Le Rond D’Alembert, UPMC, Paris

Introduction

Motivation for Higher Order Schemes

Order of a scheme (k) : if error ∝ hk (h = grid spacing)

Advantages of a Lower order Scheme

1. Easier to code, with compact stencils

2. Inexpensive to develop, hence wider Industrial usage

3. More robust

Advantages of a Higher Order Scheme

1. Higher accuracy for smooth solution
• Vortex dominated flows (dissipation problem with lower order methods)

• Boundary layer flows

2. Computation cost
• For reaching the same error levels, lower grid spacing is required for higher order methods

• However, complexity of algorithm, means higher CPU time is required for computing each step

• Tradeoff (Needs to be analyzed)

1

Motivation for Higher Order Schemes

Order of a scheme (k) : if error ∝ hk (h = grid spacing)

Advantages of a Lower order Scheme

1. Easier to code, with compact stencils

2. Inexpensive to develop, hence wider Industrial usage

3. More robust

Advantages of a Higher Order Scheme

1. Higher accuracy for smooth solution
• Vortex dominated flows (dissipation problem with lower order methods)

• Boundary layer flows

2. Computation cost
• For reaching the same error levels, lower grid spacing is required for higher order methods

• However, complexity of algorithm, means higher CPU time is required for computing each step

• Tradeoff (Needs to be analyzed)

1

Motivation for Higher Order Schemes

Order of a scheme (k) : if error ∝ hk (h = grid spacing)

Advantages of a Lower order Scheme

1. Easier to code, with compact stencils

2. Inexpensive to develop, hence wider Industrial usage

3. More robust

Advantages of a Higher Order Scheme

1. Higher accuracy for smooth solution
• Vortex dominated flows (dissipation problem with lower order methods)

• Boundary layer flows

2. Computation cost
• For reaching the same error levels, lower grid spacing is required for higher order methods

• However, complexity of algorithm, means higher CPU time is required for computing each step

• Tradeoff (Needs to be analyzed)

1

Motivation for Higher Order Schemes

Order of a scheme (k) : if error ∝ hk (h = grid spacing)

Advantages of a Lower order Scheme

1. Easier to code, with compact stencils

2. Inexpensive to develop, hence wider Industrial usage

3. More robust

Advantages of a Higher Order Scheme

1. Higher accuracy for smooth solution
• Vortex dominated flows (dissipation problem with lower order methods)

• Boundary layer flows

2. Computation cost
• For reaching the same error levels, lower grid spacing is required for higher order methods

• However, complexity of algorithm, means higher CPU time is required for computing each step

• Tradeoff (Needs to be analyzed)

1

POISSON PROBLEM -

Methodology

Poisson Helmholtz Equation

The Poisson Helmholtz equation in its generalized formulation

L(a) = ∇ · (α∇a) + λa = b

• Existing Second Order Scheme

• Proposed Fourth Order Scheme

2

Discretization Scheme - Fourth Order : Stencil Layout

Scheme Development : Needs Computation of face Gradients operator and subsequent

Divergence operator !

3

Discretization Scheme : Face Centred Gradient Operator

1. X equation :

∇xA(0.5,0) =
A(−1, 0)− 27A(0, 0) + 27A(1, 0)− A(2, 0)

24δ

2. Y equation :

∇yA(0,0.5) =
A(0,−1)− 27A(0, 0) + 27A(0, 1)− A(0, 2)

24δ

4

Discretization Scheme : Face Averaged Gradient Operator

• X : (∇x)avgA(0.5,0) =
−17∇x A(0.5,2)+308∇x A(0.5,1)+5178∇x A(0.5,0)+308∇x A(0.5,−1)−17∇x A(0.5,−2)

5760

• Y : (∇y)avgA(0,0.5) =
−17∇y A(2,0.5)+308∇y A(1,0.5)+5178∇y A(0,0.5)+308∇y A(−1,0.5)−17∇y A(−2,0.5)

5760

• ∇2A(0,0) =
(∇x)avg A(0.5,0)−(∇x)avg A(−0.5,0)+(∇y)avg A(0,0.5)−(∇y)avg A(0,−0.5)

δ

5

Poisson solver algorithm

1. Jacobi Iterations

2. Multigrid method

• Restriction of Residuals from finest cells down to coarsest cells

• Prolongation of Iterative solution corrections from coarsest to

finest levels

• Accelerates the algorithm. Large wavelength errors die out

faster on coarser grids

3. Adaptivity

6

Test Function - Compact Support Function

A(x) =

{
(1− x2)

5
if |x | < 1

0 otherwise

B(x) = ∇2A(x)

-10

-8

-6

-4

-2

 0

 2

 4

 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

x

A(x)

B(x)

7

Results

Uniform grid

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2e-05

 0

 2e-05

E(x,y)

Error-Distribution

x

y

E(x,y)

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

L
o

g
(L

2
-N

o
rm

-E
rr

o
r)

Log(GridPoints)

Error-Convergence-Poisson4

f(x) = -4.00x + 2.63

The scheme shows an error convergence of 4 as expected !

8

Order 2 vs Order 4 simulation

-9

-8

-7

-6

-5

-4

-3

-2

-1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

L
o
g
(L

2
-N

o
rm

-E
rr

o
r)

Log(GridPoints)

Poisson-Order2

f(x) = -1.98x + 0.75

Poisson-Order4

g(x) = -3.97x + 2.58

-9

-8

-7

-6

-5

-4

-3

-2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

lo
g
1
0
(E

rr
o
r_

m
a
x
)

Log10(Simulation Time)

PoissonOrder-2

PoissonOrder4

• To achieve an L1 error of 1E-04 in the domain :
1. Poisson order 2 scheme requires 256*256 grid points. Simulation time ∼ 0.101 seconds.

2. Poisson order 4 scheme requires 45*45 grid points. Simulation time ∼ 0.011 seconds.

9

Order 2 vs Order 4 simulation

-9

-8

-7

-6

-5

-4

-3

-2

-1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

L
o
g
(L

2
-N

o
rm

-E
rr

o
r)

Log(GridPoints)

Poisson-Order2

f(x) = -1.98x + 0.75

Poisson-Order4

g(x) = -3.97x + 2.58

-9

-8

-7

-6

-5

-4

-3

-2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

lo
g
1
0
(E

rr
o
r_

m
a
x
)

Log10(Simulation Time)

PoissonOrder-2

PoissonOrder4

• To achieve an L1 error of 1E-04 in the domain :
1. Poisson order 2 scheme requires 256*256 grid points. Simulation time ∼ 0.101 seconds.

2. Poisson order 4 scheme requires 45*45 grid points. Simulation time ∼ 0.011 seconds.

9

Order 2 vs Order 4 simulation

-9

-8

-7

-6

-5

-4

-3

-2

-1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

L
o
g
(L

2
-N

o
rm

-E
rr

o
r)

Log(GridPoints)

Poisson-Order2

f(x) = -1.98x + 0.75

Poisson-Order4

g(x) = -3.97x + 2.58

-9

-8

-7

-6

-5

-4

-3

-2

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5

lo
g
1
0
(E

rr
o
r_

m
a
x
)

Log10(Simulation Time)

PoissonOrder-2

PoissonOrder4

• To achieve an L1 error of 1E-04 in the domain :
1. Poisson order 2 scheme requires 256*256 grid points. Simulation time ∼ 0.101 seconds.

2. Poisson order 4 scheme requires 45*45 grid points. Simulation time ∼ 0.011 seconds.

9

Motivation for WENO Schemes

2D Saint Venant Equations

1. Assumptions

• Horizontal length scale >> Vertical length scale

• Vertical velocity << Horizontal Velocity

• Pressure variation in vertical direction is a hydrostatic variation

2. SV equation derivation

• Obtained by depth Integrating the Navier Stokes equations

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0

∂(hu)

∂t
+

∂(hu2 + 1
2
gh2)

∂x
+

∂(huv)

∂y
= 0

∂(hv)

∂t
+

∂(huv)

∂x
+

∂(hu2 + 1
2
gh2)

∂y
= 0

10

2D Saint Venant Equations

1. Assumptions

• Horizontal length scale >> Vertical length scale

• Vertical velocity << Horizontal Velocity

• Pressure variation in vertical direction is a hydrostatic variation

2. SV equation derivation

• Obtained by depth Integrating the Navier Stokes equations

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0

∂(hu)

∂t
+

∂(hu2 + 1
2
gh2)

∂x
+

∂(huv)

∂y
= 0

∂(hv)

∂t
+

∂(huv)

∂x
+

∂(hu2 + 1
2
gh2)

∂y
= 0

10

1D Gravity Wave test case

• ∂h
∂t + ∂(hu)

∂x = 0

• ∂(hu)
∂t +

∂(hu2+ 1
2
gh2)

∂x = 0

• Periodic boundary conditions

• Probe point : Last crest point

11

1D Gravity Wave test case

• ∂h
∂t + ∂(hu)

∂x = 0

• ∂(hu)
∂t +

∂(hu2+ 1
2
gh2)

∂x = 0

• Periodic boundary conditions

• Probe point : Last crest point

11

1D Gravity Wave - Flux Limiter Results

Numerical Algorithm

• Predictor-corrector algorithm for time advection

• Minmod 2 Limiter used for face flux computation

• Riemann problem - Kurganov Method

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 0 20 40 60 80 100

K
in

e
ti
c
 E

n
e
rg

y

Time

Limiter-KE

Envelope Function

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 20 40 60 80 100

%
 d

ro
p
 i
n
 T

o
ta

l
E

n
e
rg

y

Time

Limiter-TE

Motivation : To build an advection scheme, which cuts down on numerical

damping !

12

1D Gravity Wave - Flux Limiter Results

Numerical Algorithm

• Predictor-corrector algorithm for time advection

• Minmod 2 Limiter used for face flux computation

• Riemann problem - Kurganov Method

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 0 20 40 60 80 100

K
in

e
ti
c
 E

n
e
rg

y

Time

Limiter-KE

Envelope Function

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 20 40 60 80 100

%
 d

ro
p
 i
n
 T

o
ta

l
E

n
e
rg

y

Time

Limiter-TE

Motivation : To build an advection scheme, which cuts down on numerical

damping !

12

WENO Methodology

WENO Schemes 1D - Methodology

• 3rd Order polynomial interpolations of volume averages to face values (S1, S2 and S3)

• Limiting function derivations in each stencil (Measures smoothness of Interpolant)

βj =
k∑

l=1

∆x2l−1
∫ xi+1/2

xi−1/2

(
d l

dx l
Pj (x))

2

dx

• Derive weight functions using the limiters (Convex combination of all three stencil contributions)

• Order 5 interpolation achieved in smooth regions, while order 3 in discontinuous regions.

13

WENO Schemes 2D - Methodology

• 1D Weno Sweep. Compute face avg values using Surface avg values.

14

WENO Schemes 2D - Methodology

• 1D Weno sweep. Compute face avg values using Surface avg values.

• 1D Weno sweep in transverse direction. Compute point values at 3 quadrature points.

• Solve the riemann problem to Compute point fluxes at all three quadrature points.

• Guassian quadrature sum to get flux over entire face.

15

Demonstrating Weno Advection (Test case setup)

• Tracer Initialization with a periodic function Tracer(t = 0) = sin(πx/2)sin(πy/2)

• Constant advecting velocity u = 3, v = 2

• Periodic boundary conditions

16

Error Distribution and Convergence

• Uniform Grid 16*16, 32*32, 64*64, 128*128 and 256*256

• WENO 5 advection schemes

• Runge Kutta 4 time step marching

• Demonstrates Order 5 error convergence

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

-2e-07

 0

 2e-07

E(x,y)

Error-Distribution

x

y

E(x,y)

-12

-11

-10

-9

-8

-7

-6

-5

-4

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

L
o
g
(L

2
-N

o
rm

-E
rr

o
r)

Log(GridPoints)

Error-Convergence-WENO5

f(x) = -5.01x + 1.07

17

Results - Gravity Wave

Minmod Limiter results vs Weno schemes

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 0 20 40 60 80 100

K
in

e
ti
c
-E

n
e
rg

y

time

MINMOD-LIMITER-KE

WENO-KE

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

D
a
m

p
in

g
 C

o
e
ff
ic

ie
n
ts

log10(Number of grids)

MINMOD-LIMITER-DampingCoeff

WENO-DampingCoeff

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 20 40 60 80 100 120

%
 D

e
c
a
y
 i
n
 T

o
ta

l
E

n
e
rg

y

Time

MINMOD-LIMITER-TE

WENO-TE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

%
 E

rr
o
r

in
 T

im
e
 p

e
ri
o
d
 c

o
m

p
u
ta

ti
o
n

Log10(No of grids)

MINMOD-LIMITER-TIME-PERIOD

WENO-TIME-PERIOD

18

Minmod Limiter results vs Weno schemes

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 0 20 40 60 80 100

K
in

e
ti
c
-E

n
e
rg

y

time

MINMOD-LIMITER-KE

WENO-KE

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

D
a
m

p
in

g
 C

o
e
ff
ic

ie
n
ts

log10(Number of grids)

MINMOD-LIMITER-DampingCoeff

WENO-DampingCoeff

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 20 40 60 80 100 120

%
 D

e
c
a
y
 i
n
 T

o
ta

l
E

n
e
rg

y

Time

MINMOD-LIMITER-TE

WENO-TE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

%
 E

rr
o
r

in
 T

im
e
 p

e
ri
o
d
 c

o
m

p
u
ta

ti
o
n

Log10(No of grids)

MINMOD-LIMITER-TIME-PERIOD

WENO-TIME-PERIOD

18

Minmod Limiter results vs Weno schemes

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 0 20 40 60 80 100

K
in

e
ti
c
-E

n
e
rg

y

time

MINMOD-LIMITER-KE

WENO-KE

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

D
a
m

p
in

g
 C

o
e
ff
ic

ie
n
ts

log10(Number of grids)

MINMOD-LIMITER-DampingCoeff

WENO-DampingCoeff

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 20 40 60 80 100 120

%
 D

e
c
a
y
 i
n
 T

o
ta

l
E

n
e
rg

y

Time

MINMOD-LIMITER-TE

WENO-TE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

%
 E

rr
o
r

in
 T

im
e
 p

e
ri
o
d
 c

o
m

p
u
ta

ti
o
n

Log10(No of grids)

MINMOD-LIMITER-TIME-PERIOD

WENO-TIME-PERIOD

18

Minmod Limiter results vs Weno schemes

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 0 20 40 60 80 100

K
in

e
ti
c
-E

n
e
rg

y

time

MINMOD-LIMITER-KE

WENO-KE

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

D
a
m

p
in

g
 C

o
e
ff
ic

ie
n
ts

log10(Number of grids)

MINMOD-LIMITER-DampingCoeff

WENO-DampingCoeff

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0 20 40 60 80 100 120

%
 D

e
c
a
y
 i
n
 T

o
ta

l
E

n
e
rg

y

Time

MINMOD-LIMITER-TE

WENO-TE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

%
 E

rr
o
r

in
 T

im
e
 p

e
ri
o
d
 c

o
m

p
u
ta

ti
o
n

Log10(No of grids)

MINMOD-LIMITER-TIME-PERIOD

WENO-TIME-PERIOD

18

Adaptivity Methodology

Adaptive Grids in Basilisk

• Basilisk supports tree based grids (convenient for refinement / coarsening

action)

• Basilisk employs an adaptive wavelet algorithm (which is not problem specific)

• Based solely on estimation of errors due to spatial discretization of fields

• Error estimation is based on a two step process
• Restriction(Coarsening) : Values on the parent cells are defined from child cell values

• Prolongation(Refinement) : The parent cell values are prolongated down to obtain the

child cell values

• The error is given by the difference of the original node cell values with

the Restricted-Prolongated values

• The cells which show an error higher than the upper-tolerance limit are

refined

• The cells which show an error lower than the lower-tolerance limit are

coarsened

19

Adaptive Grids in Basilisk

• Basilisk supports tree based grids (convenient for refinement / coarsening

action)

• Basilisk employs an adaptive wavelet algorithm (which is not problem specific)

• Based solely on estimation of errors due to spatial discretization of fields

• Error estimation is based on a two step process
• Restriction(Coarsening) : Values on the parent cells are defined from child cell values

• Prolongation(Refinement) : The parent cell values are prolongated down to obtain the

child cell values

• The error is given by the difference of the original node cell values with

the Restricted-Prolongated values

• The cells which show an error higher than the upper-tolerance limit are

refined

• The cells which show an error lower than the lower-tolerance limit are

coarsened

19

Adaptive Grids in Basilisk

• Basilisk supports tree based grids (convenient for refinement / coarsening

action)

• Basilisk employs an adaptive wavelet algorithm (which is not problem specific)

• Based solely on estimation of errors due to spatial discretization of fields

• Error estimation is based on a two step process
• Restriction(Coarsening) : Values on the parent cells are defined from child cell values

• Prolongation(Refinement) : The parent cell values are prolongated down to obtain the

child cell values

• The error is given by the difference of the original node cell values with

the Restricted-Prolongated values

• The cells which show an error higher than the upper-tolerance limit are

refined

• The cells which show an error lower than the lower-tolerance limit are

coarsened

19

Adaptive Grids in Basilisk

• Basilisk supports tree based grids (convenient for refinement / coarsening

action)

• Basilisk employs an adaptive wavelet algorithm (which is not problem specific)

• Based solely on estimation of errors due to spatial discretization of fields

• Error estimation is based on a two step process
• Restriction(Coarsening) : Values on the parent cells are defined from child cell values

• Prolongation(Refinement) : The parent cell values are prolongated down to obtain the

child cell values

• The error is given by the difference of the original node cell values with

the Restricted-Prolongated values

• The cells which show an error higher than the upper-tolerance limit are

refined

• The cells which show an error lower than the lower-tolerance limit are

coarsened

19

Adaptive Grids in Basilisk

• Basilisk supports tree based grids (convenient for refinement / coarsening

action)

• Basilisk employs an adaptive wavelet algorithm (which is not problem specific)

• Based solely on estimation of errors due to spatial discretization of fields

• Error estimation is based on a two step process
• Restriction(Coarsening) : Values on the parent cells are defined from child cell values

• Prolongation(Refinement) : The parent cell values are prolongated down to obtain the

child cell values

• The error is given by the difference of the original node cell values with

the Restricted-Prolongated values

• The cells which show an error higher than the upper-tolerance limit are

refined

• The cells which show an error lower than the lower-tolerance limit are

coarsened

19

Restriction operator

The restriction operator is quite basic. It is the direct average over the four children

cells.

A(0, 0) =
A(−1,−1) + A(−1, 1) + A(1,−1) + A(1, 1)

4

20

Restriction operator

The restriction operator is quite basic. It is the direct average over the four children

cells.

A(0, 0) =
A(−1,−1) + A(−1, 1) + A(1,−1) + A(1, 1)

4

20

Prolongation Operator

• Prolongation operator : Interpolate fine cell volume averages from coarse cell volume averages

21

Prolongation Operator

• Prolongation operator : Interpolate fine cell volume averages from coarse cell volume averages

• 1D interpolation sweep in x direction. Interpolation provides line averages at three quadrature locations.

(x = xq1, x = xq2, x = xq3)

22

Prolongation Operator

• Prolongation operator : Interpolate fine cell volume averages from coarse cell volume averages

• 1D interpolation sweep in x direction. Interpolation provides line averages at three quadrature locations.

(x = xq1, x = xq2, x = xq3)

• 1D interpolation sweep in y direction. Interpolation provides point values from line averages. 9 Quadrature

points.

• Guassian quadrature sum to get surface average in fine cell.
23

Prolongation operator - Smooth Functions

• f (x, y) = sin(πx/2)sin(πy/2)

• Demonstrates Order 5 error convergence

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1
 0

 1
 2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

Coarse

Fine-PolyInterpolation

x

f(x)
-12

-10

-8

-6

-4

-2

 0

 0.5 1 1.5 2 2.5 3 3.5
L

o
g

(L
2

-N
o

rm
-E

rr
o

r)
Log(GridPoints)

Error-Convergence-Prolongation

f(x) = -4.98x + 3.44

24

Prolongation operator - Discontinuous functions

-2

-1

 0

 1

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(
x
)

x

Coarse

25

Prolongation operator - Discontinuous functions

-2

-1

 0

 1

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(
x
)

x

Coarse

Fine

-2

-1

 0

 1

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(
x
)

x

Coarse

Fine

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

 1.8 2 2.2 2.4 2.6 2.8 3 3.2

L
o

g
(L

2
-N

o
rm

-E
rr

o
r)

Log(GridPoints)

Error-Convergence-Prolongation

f(x) = -3.08x + 3.03

26

Prolongation operator - Discontinuous functions

-2

-1

 0

 1

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(
x
)

x

Coarse

Fine

-2

-1

 0

 1

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(
x
)

x

Coarse

Fine

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

 1.8 2 2.2 2.4 2.6 2.8 3 3.2

L
o

g
(L

2
-N

o
rm

-E
rr

o
r)

Log(GridPoints)

Error-Convergence-Prolongation

f(x) = -3.08x + 3.03

26

Conclusion

Remarks on higher order schemes

1. The fourth order poisson solver provides more accurate

solutions in a shorter run time compared to a second order

solver.

2. The Weno 5 advection schemes have a superior performance

to the minmod 2 limiter scheme, when it comes to analyzing

the numerical dispersion and the dissipation of the schemes.

3. Higher order error estimation for adaptive mesh reconstruction

has been succesfully demonstrated.

27

Remarks on higher order schemes

1. The fourth order poisson solver provides more accurate

solutions in a shorter run time compared to a second order

solver.

2. The Weno 5 advection schemes have a superior performance

to the minmod 2 limiter scheme, when it comes to analyzing

the numerical dispersion and the dissipation of the schemes.

3. Higher order error estimation for adaptive mesh reconstruction

has been succesfully demonstrated.

27

Remarks on higher order schemes

1. The fourth order poisson solver provides more accurate

solutions in a shorter run time compared to a second order

solver.

2. The Weno 5 advection schemes have a superior performance

to the minmod 2 limiter scheme, when it comes to analyzing

the numerical dispersion and the dissipation of the schemes.

3. Higher order error estimation for adaptive mesh reconstruction

has been succesfully demonstrated.

27

Thank You !

27

	Introduction
	POISSON PROBLEM - Methodology
	Results
	Motivation for WENO Schemes
	WENO Methodology
	Results - Gravity Wave
	Adaptivity Methodology
	Conclusion

