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Introduction



Motivation for Higher Order Schemes

Order of a scheme (k) : if error ∝ hk (h = grid spacing)

Advantages of a Lower order Scheme

1. Easier to code, with compact stencils

2. Inexpensive to develop, hence wider Industrial usage

3. More robust

Advantages of a Higher Order Scheme

1. Higher accuracy for smooth solution
• Vortex dominated flows (dissipation problem with lower order methods)

• Boundary layer flows

2. Computation cost
• For reaching the same error levels, lower grid spacing is required for higher order methods

• However, complexity of algorithm, means higher CPU time is required for computing each step

• Tradeoff (Needs to be analyzed)
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POISSON PROBLEM -

Methodology



Poisson Helmholtz Equation

The Poisson Helmholtz equation in its generalized formulation

L(a) = ∇ · (α∇a) + λa = b

• Existing Second Order Scheme

• Proposed Fourth Order Scheme
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Discretization Scheme - Fourth Order : Stencil Layout

Scheme Development : Needs Computation of face Gradients operator and subsequent

Divergence operator !
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Discretization Scheme : Face Centred Gradient Operator

1. X equation :

∇xA(0.5,0) =
A(−1, 0)− 27A(0, 0) + 27A(1, 0)− A(2, 0)

24δ

2. Y equation :

∇yA(0,0.5) =
A(0,−1)− 27A(0, 0) + 27A(0, 1)− A(0, 2)

24δ
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Discretization Scheme : Face Averaged Gradient Operator

• X : (∇x )avgA(0.5,0) =
−17∇x A(0.5,2)+308∇x A(0.5,1)+5178∇x A(0.5,0)+308∇x A(0.5,−1)−17∇x A(0.5,−2)

5760

• Y : (∇y )avgA(0,0.5) =
−17∇y A(2,0.5)+308∇y A(1,0.5)+5178∇y A(0,0.5)+308∇y A(−1,0.5)−17∇y A(−2,0.5)

5760

• ∇2A(0,0) =
(∇x )avg A(0.5,0)−(∇x )avg A(−0.5,0)+(∇y )avg A(0,0.5)−(∇y )avg A(0,−0.5)

δ
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Poisson solver algorithm

1. Jacobi Iterations

2. Multigrid method

• Restriction of Residuals from finest cells down to coarsest cells

• Prolongation of Iterative solution corrections from coarsest to

finest levels

• Accelerates the algorithm. Large wavelength errors die out

faster on coarser grids

3. Adaptivity
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Test Function - Compact Support Function

A(x) =

{
(1− x2)

5
if |x | < 1

0 otherwise

B(x) = ∇2A(x)
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Results



Uniform grid
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The scheme shows an error convergence of 4 as expected !
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Order 2 vs Order 4 simulation
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• To achieve an L1 error of 1E-04 in the domain :
1. Poisson order 2 scheme requires 256*256 grid points. Simulation time ∼ 0.101 seconds.

2. Poisson order 4 scheme requires 45*45 grid points. Simulation time ∼ 0.011 seconds.
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Order 2 vs Order 4 simulation
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Motivation for WENO Schemes



2D Saint Venant Equations

1. Assumptions

• Horizontal length scale >> Vertical length scale

• Vertical velocity << Horizontal Velocity

• Pressure variation in vertical direction is a hydrostatic variation

2. SV equation derivation

• Obtained by depth Integrating the Navier Stokes equations

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0

∂(hu)

∂t
+

∂(hu2 + 1
2
gh2)

∂x
+

∂(huv)

∂y
= 0

∂(hv)

∂t
+

∂(huv)

∂x
+

∂(hu2 + 1
2
gh2)

∂y
= 0
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1D Gravity Wave test case

• ∂h
∂t + ∂(hu)

∂x = 0

• ∂(hu)
∂t +

∂(hu2+ 1
2
gh2)

∂x = 0

• Periodic boundary conditions

• Probe point : Last crest point
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1D Gravity Wave - Flux Limiter Results

Numerical Algorithm

• Predictor-corrector algorithm for time advection

• Minmod 2 Limiter used for face flux computation

• Riemann problem - Kurganov Method
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Motivation : To build an advection scheme, which cuts down on numerical

damping !
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WENO Methodology



WENO Schemes 1D - Methodology

• 3rd Order polynomial interpolations of volume averages to face values (S1, S2 and S3)

• Limiting function derivations in each stencil (Measures smoothness of Interpolant)

βj =
k∑

l=1

∆x2l−1
∫ xi+1/2

xi−1/2

(
d l

dx l
Pj (x))

2

dx

• Derive weight functions using the limiters (Convex combination of all three stencil contributions)

• Order 5 interpolation achieved in smooth regions, while order 3 in discontinuous regions.

13



WENO Schemes 2D - Methodology

• 1D Weno Sweep. Compute face avg values using Surface avg values.
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WENO Schemes 2D - Methodology

• 1D Weno sweep. Compute face avg values using Surface avg values.

• 1D Weno sweep in transverse direction. Compute point values at 3 quadrature points.

• Solve the riemann problem to Compute point fluxes at all three quadrature points.

• Guassian quadrature sum to get flux over entire face.
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Demonstrating Weno Advection (Test case setup)

• Tracer Initialization with a periodic function Tracer(t = 0) = sin(πx/2)sin(πy/2)

• Constant advecting velocity u = 3, v = 2

• Periodic boundary conditions
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Error Distribution and Convergence

• Uniform Grid 16*16, 32*32, 64*64, 128*128 and 256*256

• WENO 5 advection schemes

• Runge Kutta 4 time step marching

• Demonstrates Order 5 error convergence
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Results - Gravity Wave



Minmod Limiter results vs Weno schemes
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Minmod Limiter results vs Weno schemes
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Minmod Limiter results vs Weno schemes
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Minmod Limiter results vs Weno schemes
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Adaptivity Methodology



Adaptive Grids in Basilisk

• Basilisk supports tree based grids (convenient for refinement / coarsening

action)

• Basilisk employs an adaptive wavelet algorithm ( which is not problem specific )

• Based solely on estimation of errors due to spatial discretization of fields

• Error estimation is based on a two step process
• Restriction(Coarsening) : Values on the parent cells are defined from child cell values

• Prolongation(Refinement) : The parent cell values are prolongated down to obtain the

child cell values

• The error is given by the difference of the original node cell values with

the Restricted-Prolongated values

• The cells which show an error higher than the upper-tolerance limit are

refined

• The cells which show an error lower than the lower-tolerance limit are

coarsened
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Restriction operator

The restriction operator is quite basic. It is the direct average over the four children

cells.

A(0, 0) =
A(−1,−1) + A(−1, 1) + A(1,−1) + A(1, 1)

4
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Prolongation Operator

• Prolongation operator : Interpolate fine cell volume averages from coarse cell volume averages

21



Prolongation Operator

• Prolongation operator : Interpolate fine cell volume averages from coarse cell volume averages

• 1D interpolation sweep in x direction. Interpolation provides line averages at three quadrature locations.

(x = xq1, x = xq2, x = xq3)
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Prolongation Operator

• Prolongation operator : Interpolate fine cell volume averages from coarse cell volume averages

• 1D interpolation sweep in x direction. Interpolation provides line averages at three quadrature locations.

(x = xq1, x = xq2, x = xq3)

• 1D interpolation sweep in y direction. Interpolation provides point values from line averages. 9 Quadrature

points.

• Guassian quadrature sum to get surface average in fine cell.
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Prolongation operator - Smooth Functions

• f (x, y) = sin(πx/2)sin(πy/2)

• Demonstrates Order 5 error convergence
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Prolongation operator - Discontinuous functions
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Prolongation operator - Discontinuous functions
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Prolongation operator - Discontinuous functions
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Conclusion



Remarks on higher order schemes

1. The fourth order poisson solver provides more accurate

solutions in a shorter run time compared to a second order

solver.

2. The Weno 5 advection schemes have a superior performance

to the minmod 2 limiter scheme, when it comes to analyzing

the numerical dispersion and the dissipation of the schemes.

3. Higher order error estimation for adaptive mesh reconstruction

has been succesfully demonstrated.
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Thank You !
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