

Binary mixture & evaporation

Quentin Magdelaine

SVI – Saint-Gobain Recherche, CNRS – Paris Jean-Le-Rond d'Alembert Institute – UPMC, CNRS – Paris

Frédéric Mondiot, Alban Sauret Jérémie Teisseire, Arnaud Antkowiak

Outline

Introduction

Wet coating Marangoni flow Simplification

Modeling

Pure liquid

Mixtures

Marangoni stress in Basilisk

Conclusion

Introduction
Wet coating

- various applications
- various substrates
- mixture liquid film ► coating

glass plates

flexible substrates

Introduction
Wet coating

Drying of liquid films

relaxation or destabilization?

Paints, protective and functionalized layers: defects limit the applications

▶ what do they have in common? ▶ binary mixture

Introduction
Marangoni flow

 $\gamma_{\rm eth} < \gamma_{\rm water}$

local increase of the tension ► healing

Introduction
Marangoni flow

 $\gamma_{\rm pol} < \gamma_{\rm water}$

local decrease of the tension ► break-up

Introduction Simplification

Evaporation-induced Marangoni flows

- evaporation
- Marangoni stress
- no particle, no polymer no thermal transfer
- both have to be implemented in Basilisk

Introduction

Modeling Evaporation equations Marangoni stress

Pure liquid

Mixtures

Marangoni stress in Basilisk

Conclusion

Modeling Evaporation equations

In the liquid and the vapor, transport equation:

$$\frac{\mathrm{d}c}{\mathrm{d}t} + \nabla \cdot (c \mathbf{v}) = \nabla \cdot (D \nabla c)$$

at the interface, on the vapor side:

on the liquid side:

$$\begin{split} \mathbf{j}^{\mathsf{D}}_{\mathcal{L}_2} &= \mathbf{0} \quad \text{not evaporating} \\ \mathbf{j}^{\mathsf{D}}_{\mathcal{L}_1} &= \rho_{\mathcal{L}} \, \mathbf{v}_{\mathcal{I}} \quad \text{evaporating} \end{split}$$

Modeling
Marangoni stress

Capillary force

$$d\mathbf{F}_{\ell} = (\gamma \mathbf{t})(s) - (\gamma \mathbf{t})(s + ds)$$
$$\mathbf{f}_{S} = \frac{d}{ds}(\gamma \mathbf{t})$$
$$\mathbf{f}_{S} = \gamma \kappa \mathbf{n} + \frac{d\gamma}{ds} \mathbf{t}$$

generalized in 3D:

 $\mathbf{f}_{\mathsf{S}} = \gamma \, \kappa \, \mathbf{n} + \nabla_{\mathsf{S}} \, \gamma$

$$\gamma t$$
 γt

Laplace pressure Marangoni stress

Evaporation: six steps

Outline

Introduction

Modeling

Pure liquid

Immersed boundary condition Interface velocity Exemples: drop & film

Mixtures

Marangoni stress in Basilisk

Conclusion

Pure liquid Two steps

Pure liquid Immersed boundary condition

- saturation of the vapor concentration at the interface
- ► immersed Dirichlet boundary condition, no ghost cell

Pure liquid Immersed boundary condition

- **saturation** of the vapor concentration at the interface
- immersed Dirichlet boundary condition, no ghost cell
 - reset the concentration at each step: not sufficent

Pure liquid Immersed boundary condition

- saturation of the vapor concentration at the interface
- immersed Dirichlet boundary condition, no ghost cell
- reset the concentration at each step: not sufficent
- setpoint in the diffusion equation

$$\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}} = -\mathbf{j}_{\mathcal{V}}^{\mathsf{D}} = D_{\mathcal{V}} \nabla c_{\mathcal{V}}$$

$$\rho_{\mathcal{L}} \, \mathbf{v}_{\mathcal{I}} = -\mathbf{j}_{\mathcal{V}}^{\mathsf{D}} = \mathcal{D}_{\mathcal{V}} \, \nabla \, \mathbf{c}_{\mathcal{V}}$$

 need to offset the computation of the vapor gradient

$$\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}} = -\mathbf{j}_{\mathcal{V}}^{\mathsf{D}} = D_{\mathcal{V}} \nabla c_{\mathcal{V}}$$

 need to offset the computation of the vapor gradient

if cell[] or cell[-1] $\in \mathcal{I}$ $u_f.x = \nabla c.x[s(n.x), 0];$

$$\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}} = -\mathbf{j}_{\mathcal{V}}^{\mathsf{D}} = D_{\mathcal{V}} \nabla \mathbf{c}_{\mathcal{V}}$$

 need to offset the computation of the vapor gradient

 $\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}} = -\mathbf{j}_{\mathcal{V}}^{\mathsf{D}} = D_{\mathcal{V}} \nabla \mathbf{c}_{\mathcal{V}}$

- need to offset the computation of the vapor gradient
- weighted average between neighbor vapor cells

Pure liquid ► Exemples: drop & film

$$\mathbf{R}^2 = {R_0}^2 - 2D \,\frac{\Delta c}{\rho} t$$

Pure liquid ► Exemples: drop & film

Modeling

Pure liquid

Mixtures

No flux condition Tracer advection Removal Raoult's law

Marangoni stress in Basilisk

Conclusion

- No diffusion of the liquid tracers through the interface
- basic idea: set the **diffusion coefficient** to **zero outside** of the liquid

- No diffusion of the liquid tracers through the interface
- basic idea: set the **diffusion coefficient** to **zero outside** of the liquid

▶ face value of f

$$\frac{\mathrm{d}c}{\mathrm{d}t} = \nabla \cdot (D \ \nabla c), \quad \text{with} \quad \iint c \,\mathrm{d}S \sim f \,c \,\Delta^2$$
$$\iint \frac{\mathrm{d}c}{\mathrm{d}t} \,\mathrm{d}S = \int D \ \nabla c \cdot \mathbf{n} \,\mathrm{d}L \quad \text{then} \quad \Delta^2 f \,\frac{\mathrm{d}c}{\mathrm{d}t} = \sum_{\mathbf{f}} \Delta f_{\mathbf{f}} \,D \ \nabla c \cdot \mathbf{n}$$
$$\blacktriangleright \quad f \,\frac{\mathrm{d}c}{\mathrm{d}t} = \nabla \cdot (f_{\mathbf{f}} \,D \ \nabla c)$$

if nothing is done

$$D.x = D_{\mathcal{L}}$$

if nothing is done first attempt

 $D.x = D_{\mathcal{L}}$

if f > 0, $D.x = D_{\mathcal{L}}$ else D.x = 0

if nothing is done

first attempt

current code

$D.x = D_{\mathcal{L}}$

if f > 0, $D.x = D_{\mathcal{L}}$ else D.x = 0 $D.x = D_{\mathcal{L}} f_f$ thanks to Jose-Maria!

• tracers must not be left behind

Receding interface

Leaving tracer behind

Mixtures Tracer advection

- tracers must not be left behind
- already implemented in Basilisk
- need to advect the **quantity field** *f c* instead of *c*

Receding interface

Clean advection

Amount to remove: $s = \rho \mathbf{u} \cdot \mathbf{n} \ell dt$

- **u** · **n** can be computed using different approaches
- currently, **none** of them leads to a **stable interface**
- diffusion & advection of one compound, deduction of the evaporating compound:

$$c_{\mathcal{L}_1} = 1 - c_{\mathcal{L}_2}$$

At the interface, the Dirichlet condition has to be changed:

$$c_{\mathcal{V}} = c_s \left(c_{\mathcal{L}_1} \right) = c_s \frac{c_{\mathcal{L}_1}}{\rho_{\mathcal{L}}}$$

At the interface, the Dirichlet condition has to be changed:

$$\mathbf{c}_{\mathcal{V}} = c_{s}\left(c_{\mathcal{L}_{1}}\right) = c_{s}\frac{c_{\mathcal{L}_{1}}}{\rho_{\mathcal{L}}}$$

Evaporation of a mixture drop

Fast diffusion

Slow diffusion

Evaporation of a mixture drop

Some stability issues at large Peclet:

Outline

Introduction

Modeling

Pure liquid

Mixtures

Marangoni stress in Basilisk

Conclusion

Marangoni stress in Basilisk

Capillary force, two formulations

$$\mathbf{F}_{\ell} = (\gamma \mathbf{t})(s) - (\gamma \mathbf{t})(s + \Delta s)$$
$$\mathbf{f}_{\mathsf{S}} = \gamma \kappa \mathbf{n} + \nabla_{\mathsf{S}} \gamma$$

Brackbill formulation Brackbill, Kothe, Zemach, 1992

Seric, Afkhami, Kondic, 2017

- + $\delta_{\rm S}$ is added to make it volumetric
- not easy to evaluate the surface gradient ∇_{S}

Marangoni stress in Basilisk

Capillary force, two formulations

$$\mathbf{F}_{\ell} = (\gamma \mathbf{t})(s) - (\gamma \mathbf{t})(s + \Delta s)$$
$$\mathbf{f}_{\mathsf{S}} = \gamma \kappa \mathbf{n} + \nabla_{\mathsf{S}} \gamma$$

Brackbill formulation

Brackbill, Kothe, Zemach, 1992 Seric, Afkhami, Kondic, 2017

- $\delta_{\rm S}$ is added to make it volumetric
- not easy to evaluate the surface gradient ∇_{S}

Initial formulation Abu-Al-Saul, Popinet and Tchelepi, *submitted*

- already discrete
- well-balanced and momumtum conservative

Outline

Introduction

Modeling

Pure liquid

Mixtures

Marangoni stress in Basilisk

Conclusion

Conclusion

▶ Binary or more complex mixtures

- evaporation-induced instability
- ubiquitous in industrial processes

Conclusion

Binary or more complex mixtures

- evaporation-induced instability
- ubiquitous in industrial processes
- ► Evaporation in Basilisk
 - most of the work is done
 - stability issues at large Peclet

Conclusion

Binary or more complex mixtures

- evaporation-induced instability
- ubiquitous in industrial processes
- ► Evaporation in Basilisk
 - most of the work is done
 - stability issues at large Peclet
- ► Marangoni in Basilisk
 - a guiding line to follow
 - hope for a well-balanced and conservative description of the surface tension

