UPmC

Binary mixture \& evaporation

Quentin Magdelaine
SVI - Saint-Gobain Recherche, CNRS - Paris
Jean-Le-Rond d'Alembert Institute - UPMC, CNRS - Paris
Frédéric Mondiot, Alban Sauret
Jérémie Teisseire, Arnaud Antkowiak

Outline

Introduction
Wet coating
Marangoni flow
Simplification

Modeling

Pure liquid

Mixtures

Marangoni stress in Basilisk

Conclusion

Introduction $>$ Wet coating

- various applications
- various substrates
- mixture liquid film coating

flexible substrates

Deposition methods

Introduction $>$ Wet coating

Drying of liquid films

- relaxation or destabilization?

Paints, protective and functionalized layers:
defects limit the applications
what do they have in common? binary mixture

Introduction > Marangoni flow

Fluctuation of evaporation
water - ethanol

evaporation: ethanol
$\gamma_{\text {eth }}<\gamma_{\text {water }}$
local increase of the tension

- healing

Introduction > Marangoni flow

Fluctuation of evaporation
water - ethanol

evaporation: ethanol
$\gamma_{\text {eth }}<\gamma_{\text {water }}$
local increase of the tension

- healing
water - polymer

evaporation: water
$\gamma_{\text {pol }}<\gamma_{\text {water }}$
local decrease of the tension
- break-up

Introduction > Simplification

Evaporation-induced Marangoni flows

- evaporation
- Marangoni stress
- no particle, no polymer no thermal transfer
- both have to be implemented in Basilisk

Outline

Introduction
 Modeling
 Evaporation equations
 Marangoni stress

Pure liquid

Conclusion

Modeling $>$ Evaporation equations

In the liquid and the vapor, transport equation:

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}+\nabla \cdot(c \mathbf{v})=\nabla \cdot(D \nabla c)
$$

at the interface, on the vapor side:
on the liquid side:

$$
\begin{array}{ll}
\mathbf{j}_{\mathcal{L}_{2}}^{D}=\mathbf{0} & \text { not evaporating } \\
\mathbf{j}_{\mathcal{L}_{1}}^{\mathrm{D}}=\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}} & \text { evaporating }
\end{array}
$$

Modeling $>$ Marangoni stress

Capillary force

$$
\begin{aligned}
\mathbf{d F}_{\ell} & =(\gamma \mathbf{t})(s)-(\gamma \mathbf{t})(s+\mathrm{d} s) \\
\mathbf{f}_{\mathrm{S}} & =\frac{\mathrm{d}}{\mathrm{ds}}(\gamma \mathbf{t}) \\
\mathbf{f}_{\mathrm{S}} & =\gamma \kappa \mathbf{n}+\frac{\mathrm{d} \gamma}{\mathrm{~d} s} \mathbf{t}
\end{aligned}
$$

Laplace pressure Marangoni stress
generalized in 3D:

$$
\mathbf{f}_{\mathrm{S}}=\gamma \kappa \mathbf{n}+\nabla_{\mathrm{S}} \gamma
$$

Evaporation: six steps

(1) saturation at the interface

Outline

Introduction

Modeling

Pure liquid
Immersed boundary condition Interface velocity

Exemples: drop \& film

Conclusion
(1) saturation at the interface

Pure liquid $>$ Immersed boundary condition

- saturation of the vapor concentration at the interface
- immersed Dirichlet boundary condition, no ghost cell

Pure liquid $>$ Immersed boundary condition

- saturation of the vapor concentration at the interface
- immersed Dirichlet boundary condition, no ghost cell
- reset the concentration at each step: not sufficent

- saturation of the vapor concentration at the interface
- immersed Dirichlet boundary condition, no ghost cell
- reset the concentration at each step: not sufficent
- setpoint in the diffusion equation

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=\nabla \cdot(D \nabla c)+\frac{c_{s}-c}{\tau}
$$

Pure liquid $>$ Interface velocity

$$
\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}}=-\mathbf{j}_{\mathcal{V}}^{\mathrm{D}}=D_{\mathcal{V}} \nabla \mathcal{C}_{\mathcal{V}}
$$

Pure liquid $>$ Interface velocity

$$
\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}}=-\mathbf{j}_{\mathcal{V}}^{\mathrm{D}}=D_{\mathcal{V}} \nabla \mathcal{C}_{\mathcal{V}}
$$

- need to offset the computation of the vapor gradient

$$
\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}}=-\mathbf{j}_{\mathcal{V}}=D_{\mathcal{V}} \nabla \mathcal{C}_{\mathcal{V}}
$$

- need to offset the computation of the vapor gradient

$$
\begin{aligned}
& \text { if cell }[] \text { or cell }[-1] \in \mathcal{I} \\
& \qquad u_{f} \cdot x=\nabla c \cdot x[s(n \cdot x), 0]
\end{aligned}
$$

$\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}}=-\mathrm{j}_{\mathcal{V}}^{\mathrm{D}}=D_{\mathcal{V}} \nabla c_{\mathcal{V}}$

- need to offset the computation of the vapor gradient

if cell[] or cell[$[-1] \in \mathcal{I}$

$$
u_{f} \cdot x=\nabla c \cdot x[s(n \cdot x), 0] ;
$$

Pure liquid Interface velocity

$$
\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{I}}=-\mathbf{j}_{\mathcal{V}}^{\mathrm{D}}=D_{\mathcal{V}} \nabla c_{\mathcal{V}}
$$

- need to offset the computation of the vapor gradient
- weighted average between neighbor vapor cells

$$
\begin{aligned}
& \text { if cell[}[] \text { or cell }[-1] \in \mathcal{I} \\
& \qquad \begin{aligned}
u_{f} \cdot x & =|n \cdot x| \nabla c \cdot x[s(n \cdot x), 0] \\
& +|n \cdot y| \nabla c \cdot x[s(n \cdot x), s(n \cdot y)] ;
\end{aligned}
\end{aligned}
$$

Pure liquid $>$ Exemples: drop \& film

$$
R^{2}=R_{0}^{2}-2 D \frac{\Delta c}{\rho} t
$$

Pure liquid $>$ Exemples: drop \& film

$$
R^{2}=R_{0}^{2}-2 D \frac{\Delta c}{\rho} t
$$

$$
h_{\infty}=h_{0}-2 \frac{\Delta c}{\rho} \sqrt{\frac{D t}{\pi}}
$$

$$
h_{\text {box }} \propto-\frac{\Delta c}{\rho} \frac{D}{L} t
$$

Outline

Introduction

Modeling

Mixtures

No flux condition
Tracer advection
Removal
Raoult's law

Marangoni stress in Basilisk

Conclusion

Mixtures $>$ Four steps

(1) saturation at the interface

Mixtures - No flux condition

Mixtures - No flux condition

- No diffusion of the liquid tracers through the interface
- basic idea: set the diffusion coefficient to zero outside of the liquid

- No diffusion of the liquid tracers through the interface
- basic idea: set the diffusion coefficient to zero outside of the liquid
- face value of f

$$
\begin{aligned}
\frac{\mathrm{d} c}{\mathrm{~d} t} & =\nabla \cdot(D \nabla c), \quad \text { with } \quad \iint c \mathrm{~d} S \sim f c \Delta^{2} \\
\iint \frac{\mathrm{~d} c}{\mathrm{~d} t} \mathrm{~d} S & =\int D \nabla c \cdot \mathbf{n} \mathrm{~d} L \quad \text { then } \quad \Delta^{2} f \frac{\mathrm{~d} c}{\mathrm{~d} t}=\sum_{\mathrm{f}} \Delta f_{\mathrm{f}} D \nabla c \cdot \mathbf{n} \\
-\quad \mathrm{d} \frac{\mathrm{~d} c}{\mathrm{~d} t} & =\nabla \cdot\left(f_{\mathrm{f}} D \nabla c\right)
\end{aligned}
$$

Mixtures - No flux condition

if nothing is done

D. $x=D_{\mathcal{L}}$

Mixtures $>$ No flux condition

if nothing is done

D. $x=D_{\mathcal{L}}$
first attempt

if $f>0, D . x=D_{\mathcal{L}}$ else $D \cdot x=0$

Mixtures - No flux condition

if nothing is done

D. $x=D_{\mathcal{L}}$
first attempt

if $f>0, D . x=D_{\mathcal{L}}$ else $D \cdot x=0$
current code

D. $x=D_{\mathcal{L}} f_{f}$
thanks to
Jose-Maria!

Mixtures $>$ Tracer advection

- tracers must not be left behind

Receding interface

Leaving tracer behind

Mixtures $>$ Tracer advection

- tracers must not be left behind
- already implemented in Basilisk
- need to advect the quantity field $f c$ instead of c

Receding interface

Clean advection

Mixtures $>$ Removal

Amount to remove: $s=\rho \mathbf{u} \cdot \mathbf{n} \ell \mathrm{d} t$

- $\mathbf{u} \cdot \mathbf{n}$ can be computed using different approaches
- currently, none of them leads to a stable interface
- diffusion \& advection of one compound, deduction of the evaporating compound:

$$
c_{\mathcal{L}_{1}}=1-c_{\mathcal{L}_{2}}
$$

Mixtures - To close the circle: the Raoult's law

At the interface, the Dirichlet condition has to be changed:

$$
c_{\mathcal{V}}=c_{s}\left(c_{\mathcal{L}_{1}}\right)=c_{s} \frac{c_{\mathcal{L}_{1}}}{\rho_{\mathcal{L}}}
$$

Mixtures \quad To close the circle: the Raoult's law

At the interface, the Dirichlet condition has to be changed:

$$
c_{\mathcal{V}}=c_{s}\left(c_{\mathcal{L}_{1}}\right)=c_{s} \frac{c_{\mathcal{L}_{1}}}{\rho_{\mathcal{L}}}
$$

Evaporation of a mixture drop
Fast diffusion
Slow diffusion

Mixtures $>$ To close the circle: the Raoult's law

Evaporation of a mixture drop

Peclet number:
$\mathrm{Pe}_{\mathcal{L}} \sim \frac{\mathbf{v}_{\mathcal{I}}}{D_{\mathcal{L}} R}$
$\mathrm{Pe}_{\mathcal{L}} \sim \frac{D_{\mathcal{V}}}{D_{\mathcal{L}}} \frac{\Delta c \mathcal{V}}{\rho_{\mathcal{L}}}$
$\mathrm{Pe}_{\mathcal{L}} \ll 1$: well mixed
$\mathrm{Pe}_{\mathcal{L}}>1$ 1: slower

Mixtures - To close the circle: the Raoult's law

Some stability issues at large Peclet:

Outline

IntroductionModelingPure liquid
Mixtures
Marangoni stress in Basilisk

Marangoni stress in Basilisk

Capillary force, two formulations

$$
\begin{aligned}
& \mathbf{F}_{\ell}=(\gamma \mathbf{t})(s)-(\gamma \mathbf{t})(s+\Delta s) \\
& \mathbf{f}_{\mathbf{S}}=\gamma \kappa \mathbf{n}+\nabla_{\mathbf{S}} \gamma
\end{aligned}
$$

Brackbill formulation Brackbill, Kothe, Zemach, 1992
Seric, Afkhami, Kondic, 2017

- δ_{S} is added to make it volumetric
- not easy to evaluate the surface gradient ∇_{S}

Marangoni stress in Basilisk

Capillary force, two formulations

$$
\begin{aligned}
& \mathbf{F}_{\ell}=(\gamma \mathbf{t})(s)-(\gamma \mathbf{t})(s+\Delta s) \\
& \mathbf{f}_{\mathbf{S}}=\gamma \kappa \mathbf{n}+\nabla_{\mathbf{S}} \gamma
\end{aligned}
$$

Brackbill formulation Brackbill, Kothe, Zemach, 1992 Seric, Afkhami, Kondic, 2017

- δ_{S} is added to make it volumetric
- not easy to evaluate the surface gradient ∇_{S}

Initial formulation
Abu-Al-Saul, Popinet and Tchelepi, submitted

- already discrete
- well-balanced and momumtum conservative

Outline

IntroductionModelingPure liquid
Mixtures
Marangoni stress in BasiliskConclusion

Conclusion

- Binary or more complex mixtures
- evaporation-induced instability
- ubiquitous in industrial processes

Conclusion

- Binary or more complex mixtures
- evaporation-induced instability
- ubiquitous in industrial processes
- Evaporation in Basilisk
- most of the work is done
- stability issues at large Peclet

Conclusion

- Binary or more complex mixtures
- evaporation-induced instability
- ubiquitous in industrial processes
- Evaporation in Basilisk
- most of the work is done
- stability issues at large Peclet

- Marangoni in Basilisk
- a guiding line to follow
- hope for a well-balanced and conservative description of the surface tension

