

From research to industry, Gerris for microfluidic multiphase application development

Hans Heimel¹

Basilisk/Gerris Users' Meeting 2017

November 15-16, 2017 Princeton

¹PhD student at IMTEK University Freiburg, Germany and Festo AG & Co. KG Esslingen, Germany

Outline

Introduction

- Festo
- Motivation
- Simulative challenges
- Simulative approach

Bubble at rest

- Case description
- Results

Taylor bubble

- Case description
- Results

Conclusions & Outlook

Outline

Introduction

- Festo
- Motivation
- Simulative challenges
- Simulative approach

Bubble at rest

- Case description
- Results

Taylor bubble

- Case description
- Results

Conclusions & Outlook

Festo

is a global market leader for Industry Automation

4

Festo

successfully invested in its fast growing MedLab business field

Laboratory Instruments: From feeding, identifying and testing sample holders to moving, opening and closing test tubes and test carriers to feeding liquids and solids Sample handling Liquid handling Pre-/post-analytics

Festo

extends its global R&D footprint with a new R&D site for Liquid Handling near Boston, MA

Motivation

Motivation

Fast growth of microfluidic market -> desire for CFD assisted development

• **Observation**: Microfluidic multiphase CFD has strong focus on research

Motivation

- **Observation**: Microfluidic multiphase CFD has strong focus on research
- Differences to macrofluidic industries (like automobile):

Motivation

- **Observation**: Microfluidic multiphase CFD has strong focus on research
- Differences to macrofluidic industries (like automobile):
 - Prototypes are cheap and quick to produce

Motivation

- **Observation**: Microfluidic multiphase CFD has strong focus on research
- Differences to macrofluidic industries (like automobile):
 - Prototypes are cheap and quick to produce
 - Cost per piece low

Motivation

- **Observation**: Microfluidic multiphase CFD has strong focus on research
- Differences to macrofluidic industries (like automobile):
 - Prototypes are cheap and quick to produce
 - Cost per piece low
 - "Low hanging fruits" in young microfluidic market

Motivation

- **Observation**: Microfluidic multiphase CFD has strong focus on research
- Differences to macrofluidic industries (like automobile):
 - Prototypes are cheap and quick to produce
 - Cost per piece low
 - "Low hanging fruits" in young microfluidic market
 - Macrofluidic theorie and simulation methods well established for decades

Motivation

Fast growth of microfluidic market -> desire for CFD assisted development

- **Observation**: Microfluidic multiphase CFD has strong focus on research
- Differences to macrofluidic industries (like automobile):
 - Prototypes are cheap and quick to produce
 - Cost per piece low
 - "Low hanging fruits" in young microfluidic market
 - Macrofluidic theorie and simulation methods well established for decades

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

FESTO

Hans Heimel From research to industry, Gerris for microfluidic multiphase application development Basilisk/Gerris Users' Meeting 15-16th November 2017

Simulative challenges – Parasitic currents

- Undesired flow velocities
- Worst case: U_{parasitic} >> U
 -> severe impact on microfluidic simulations
- Sources:
 - 1. Inconsistent implementation of ∇p and $f_{\sigma} = \sigma \kappa \nabla \alpha$
 - 2. Inaccurate curvature estimation in $f_{\sigma} \approx \sigma \tilde{\kappa} \nabla \alpha$
 - 3. Residual tolerance of solver $\nabla \tilde{p}$
 - 4. Errors in interface advection
 - 5. Inaccurate initialization (capillary wave)

Simulative approach

Transition form research to industry

A bubble at rest		B Taylor bubble		C oscillating bubble		D bubble mixer	application
	\$						contraction contraction contraction contraction
Parasitic currents Bubble pressure (Interface thickness) (Mass error)	+	Lubrication film Ca regime Bubble dynamics	+	Surface effects Contact angle dynamics/hysteresis	+	Verification mechanism	
Simulation		Simulation		Simulation Experiment		Simulation Experiment	

Outline

Introduction

- Festo
- Motivation
- Simulative challenges
- Simulative approach

Bubble at rest

- Case description
- Results / Conclusions

Taylor bubble

- Case description
- Results

Conclusions & Outlook

Bubble at rest – Case description

- 2D square domain, L = 1 mm
- Centered air bubble (symmetry) *R* = 0,25 *mm* in **quiescent water**
- Water/air at standard conditions

Bubble at rest – Case description

- 2D square domain, L = 1 mm
- Centered air bubble (symmetry) R = 0,25 mm in quiescent water
- Water/air at standard conditions
- Mesh influence in solvers on
 - parasitic currents $\rightarrow U_{max} = U_{pc}$
 - Bubble physics $\rightarrow \Delta p = \sigma/R$ (Laplace)
- Grid refinement study
 - 16 ... 200 cells / L
 - 4 ... 50 cells / R

-> Scaling behaviour of parasitic currents and bubble physics with mesh size

22

Hans Heimel From research to industry, Gerris for microfluidic multiphase application development Basilisk/Gerris Users' Meeting 15-16th November 2017

Bubble at rest – Parasitic currents over resolution

Star-CCM+

- U_{pc} increase with $\Delta x \rightarrow 0$
- Artificial interface viscosity

- $\mu_{art,if} \gg \mu_{water}$
- reduces U_{pc} by 10^2
- U_{pc} stagnates with $\Delta x \rightarrow 0$
- $O(U_{pc}) \approx 10^{-2} 1 m/s$ Hans Heimel From research to industry, Ge

From research to industry, Gerris for microfluidic multiphase application development

Hans Heimel From research to industry, Gerris for microfluidic multiphase application development Basilisk/Gerris Users' Meeting 15-16th November 2017

Hans Heimel From research to industry, Gerris for microfluidic multiphase application development

28

From research to industry, Gerris for microfluidic multiphase application development

29

Bubble at rest – Laplace pressure over resolution

Bubble at rest – Laplace pressure over resolution

InterFoam

From research to industry, Gerris for microfluidic multiphase application development Hans Heimel

surface tension over mesh size

surface tension over mesh size

Bubble at rest – Laplace pressure over resolution

Star-CCM+

Strong oscillations for $\Delta x \rightarrow 0$

Bubble at rest – Laplace pressure over resolution

Star-CCM+

Strong oscillations for $\Delta x \rightarrow 0$

$\mu_{art,if}$ damps oscillations and $\varDelta p$

Hans Heimel

surface tension over mesh size

surface tension over mesh size

Bubble at rest – Laplace pressure over resolution

Gerris

Outline

Introduction

- Festo
- Motivation
- Simulative challenges
- Simulative approach

Bubble at rest

- Case description
- Results / Conclusions

Taylor bubble

- Case description
- Results

Conclusions & Outlook

Taylor bubble – Case description

- 2D rectangular half channel (symmetry), constant inflow U_{inlet}
- Two fluid combinations (density, viscosity ratios): 1. Liquid Liquid // 2. Water Air

Taylor bubble – Case description

- 2D rectangular half channel (symmetry), constant inflow U_{inlet}
- Two fluid combinations (density, viscosity ratios): 1. Liquid Liquid // 2. Water Air
- Investigate film thickness and droplet velocity¹: $\frac{h}{H} = \frac{\overline{U} U_{bubble}}{\overline{U}} = \frac{0.643(3Ca)^{\frac{2}{3}}}{1 + 0.643(2Ca)^{\frac{2}{3}}}$

¹Aussillous P, Quere D. Phys Fluids 2000;12:2367–71

- For Ca: $10^{-3} 10^{-1}$
 - Liquid Liquid // Water Air

Accuracy of film thickness and bubble velocity for changing Ca?

Taylor bubble – Bubble velocity over Ca

Taylor bubble – Bubble velocity over Ca

interFoam

Taylor bubble – Bubble velocity over Ca

interFoam

- Good agreement at $Ca \ge 0.06$
- Large deviation Ca < 0.06

Bubble velocity for changing flow regimes

gerris liquid/liquid

Hans Heimel From research to industry, Gerris for microfluidic multiphase application development Basilisk/Gerris Users' Meeting 15-16th November 2017

Taylor bubble – Bubble velocity over Ca

Star-CCM+

• Liquid/liquid: good agreement for $\mu_{art,if} = 0.1$

Bubble velocity for changing flow regimes

Taylor bubble – Bubble velocity over Ca

Star-CCM+

- Liquid/liquid: good agreement for $\mu_{art,if} = 0.1$
- Water/air: strong deviation for $\mu_{art,if} = 0.1$

Bubble velocity for changing flow regimes

gerris liquid/liquid

Hans Heimel From research to industry, Gerris for microfluidic multiphase application development Basilisk/Gerris Users' Meeting 15-16th November 2017

Taylor bubble – Bubble velocity over Ca

Gerris

Taylor bubble – Bubble velocity over Ca

Gerris

- Liquid/liquid: Very accurate prediction
- Water/air: similarity lost for $Ca \ge 0.03$
- In total good accuracy

```
Water/air at Ca = 0.003
```

Liquid/liquid at Ca = 0.03

Water/air at Ca = 0.03

Bubble velocity for changing flow regimes

Summary – Test cases

- $O(U_{pc}) \& \epsilon(\Delta p \cdot R)$ determined for Gerris, interFoam and StarCCM+ for bubble at rest
- *U*_{bub} compared to theory for lubricated Taylor bubble

Outline

Introduction

- Festo
- Motivation
- Simulative challenges
- Simulative approach

Bubble at rest

- Case description
- Results

Taylor bubble

- Case description
- Results

Conclusions & Outlook

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

Air/liquid systems = worst case scenario

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

- Air/liquid systems = worst case scenario
- Ca<1e-3 and fully resolved 3d domains very expensive

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

- Air/liquid systems = worst case scenario
- Ca<1e-3 and fully resolved 3d domains very expensive
- Small cases with narrowly defined questions possible

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

- Air/liquid systems = worst case scenario
- Ca<1e-3 and fully resolved 3d domains very expensive
- Small cases with narrowly defined questions possible

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

- Air/liquid systems = worst case scenario
- Ca<1e-3 and fully resolved 3d domains very expensive
- Small cases with narrowly defined questions possible

What could be improved?

• Semi-implicit surface tension implementation

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

- Air/liquid systems = worst case scenario
- Ca<1e-3 and fully resolved 3d domains very expensive
- Small cases with narrowly defined questions possible

- Semi-implicit surface tension implementation
- Artificial viscosity option

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

- Air/liquid systems = worst case scenario
- Ca<1e-3 and fully resolved 3d domains very expensive
- Small cases with narrowly defined questions possible

- Semi-implicit surface tension implementation
- Artificial viscosity option
- Combination of balanced forces and momentum conservation

Conclusions

Evaluated CFD solver potential for microfluidic multiphase simulation

- interFoam 2.31: unsuited / StarCCM+ 10.4: mediocre / Gerris: good results
- Comp. costs generally very high

Can CFD simulations sucessfully be included into the development process of microfluidic multiphase applications?

It depends...

- Air/liquid systems = worst case scenario
- Ca<1e-3 and fully resolved 3d domains very expensive
- Small cases with narrowly defined questions possible

- Semi-implicit surface tension implementation
- Artificial viscosity option
- Combination of balanced forces and momentum conservation
- Advanced schemes for contact angle dynamics and hysteresis

Thank you for your attention!

Outlook – Motivation: Microfluidic Mixing

- Microfluidic flows are laminar
 - Mixing only via diffusion -> slow process
- State of the art
 - Introduction of a mixing section
 - Disadvantages:
 - High volume
 - Clogging of sharp turns by gas bubbles
- Proposed solution
 - Mix with oscillating Taylor bubble
 - Optimize by simulation
 - Validate with experiment

Hydrophobic walls

Hydrophilic bottom

Hans Heimel From research to industry, Gerris for microfluidic multiphase application development Basilisk/Gerris Users' Meeting 15-16th November 2017

Outlook – Concept of the bubble mixer

- Comparison of mixing behavior with oscillating water in microchannel
- inhomogeneous initialized passive scalar for visualization ($c_{top} = 1$, $c_{bottom} = 0$)
- Hydrophobic walls + hydrophilic bottom

Plain Fluid

Diffusion-dominated very slow mixing

With Air Bubble

Diffusion + forced convection **fast mixing** especially near hydrophilic bottom

